Contents

lc973. K Closest Points to Origin

Contents

Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).

The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2).

You may return the answer in any order. The answer is guaranteed to be unique(except for the order that it is in).

Example 1:

https://cdn.jsdelivr.net/gh/JoshuaChou2018/oss@main/uPic/closestplane1.85NQKA.jpg

1
2
3
4
5
6
7
Input: points = [[1,3],[-2,2]], k = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

1
2
3
Input: points = [[3,3],[5,-1],[-2,4]], k = 2
Output: [[3,3],[-2,4]]
Explanation: The answer [[-2,4],[3,3]] would also be accepted.

Constraints:

  • 1 <= k <= points.length <= 104
  • -104 < xi, yi < 104
解题思路:

最直接的解法就是把每个点的距离计算出来之后,然后根据大小排序取前k。

难点:如何在排序算法中采用最快的方式。

可以考虑使用快速排序方法:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution(object):
    def kClosest(self, points, k):
        """
        :type points: List[List[int]]
        :type k: int
        :rtype: List[List[int]]
        """

        def calDist(points):
            return [(x,x[0]*x[0]+x[1]*x[1]) for x in points]

        def quickSort(lists,i,j):
            if i >= j:
                return list
            pivot = lists[i]
            low = i
            high = j
            while i < j:
                while i < j and lists[j][1] >= pivot[1]:
                    j -= 1
                lists[i]=lists[j]
                while i < j and lists[i][1] <=pivot[1]:
                    i += 1
                lists[j]=lists[i]
            lists[j] = pivot
            quickSort(lists,low,i-1)
            quickSort(lists,i+1,high)
            return lists
        
        _points=calDist(points)
        _points=quickSort(_points,0,len(_points)-1)
        return [_points[idx][0] for idx in range(k)]

但是快速排序性能不稳定,性能取决于pivot的选择。因为这个题有限制条件为topK,所以我们可以进一步考虑使用堆排序,通过维护一个大小为K的堆来遍历数据。

这里为了简化代码,我们调用python自带的heapq模块。由于heapq模块默认的保留K最大,所以为了获得k距离最近的点,我们需要把距离取负值。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import heapq

class Solution(object):
    def kClosest(self, points, k):
        """
        :type points: List[List[int]]
        :type k: int
        :rtype: List[List[int]]
        """

        def dist(point):
            return (-(point[0]**2+point[1]**2),point)

        h=[]
        for point in points:
            if len(h)<k:
                heapq.heappush(h,dist(point))
            else:
                _new=dist(point)
                if h[0][0]<_new[0]:
                    heapq.heappop(h)
                    heapq.heappush(h,_new)
        
        return [x[1] for x in h]

执行用时:148 ms, 在所有 Python 提交中击败了37.37%的用户

内存消耗:18.1 MB, 在所有 Python 提交中击败了53.54%的用户

使用堆在性能上显著优于使用快排。