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PPML- Omics: A privacy- preserving federated machine 
learning method protects patients’ privacy in omic data
Juexiao Zhou1,2†, Siyuan Chen1,2†, Yulian Wu1,2†, Haoyang Li1,2, Bin Zhang1,2, Longxi Zhou1,2,  
Yan Hu1, Zihang Xiang1, Zhongxiao Li1,2, Ningning Chen1,2, Wenkai Han1,2, Chencheng Xu1,2,  
Di Wang1,2*, Xin Gao1,2*

Modern machine learning models toward various tasks with omic data analysis give rise to threats of privacy 
leakage of patients involved in those datasets. Here, we proposed a secure and privacy- preserving machine 
learning method (PPML- Omics) by designing a decentralized differential private federated learning algorithm. 
We applied PPML- Omics to analyze data from three sequencing technologies and addressed the privacy concern 
in three major tasks of omic data under three representative deep learning models. We examined privacy breach-
es in depth through privacy attack experiments and demonstrated that PPML- Omics could protect patients’ pri-
vacy. In each of these applications, PPML- Omics was able to outperform methods of comparison under the same 
level of privacy guarantee, demonstrating the versatility of the method in simultaneously balancing the privacy- 
preserving capability and utility in omic data analysis. Furthermore, we gave the theoretical proof of the privacy- 
preserving capability of PPML- Omics, suggesting the first mathematically guaranteed method with robust and 
generalizable empirical performance in protecting patients’ privacy in omic data.

INTRODUCTION
Individual privacy in biology and biomedicine is emerging as a big 
concern (1) with the development of biomedical data science in 
recent years. A deluge of genetic data from millions of individuals 
has been generated from massive research projects in the past 
few decades, such as The Cancer Genome Atlas (TCGA) (2), the 
100,000 Genome Project (3), and the Earth BioGenome Project 
(EBP) (4) from high- throughput sequencing platforms (5). Those 
datasets may lead to potential leakage of genetic information and 
privacy concerns on ethical problems like genetic discrimination 
(6). Consequently, a large amount of potentially private genetic in-
formation from modern multi- modal sequencing platforms, in-
cluding bulk RNA sequencing (RNA- seq) (7), single- cell RNA- seq 
(scRNA- seq) (8), and spatial transcriptomics (9) might also be ex-
posed as more and more data are being published (section S1.1).

In addition to the data itself, another risk factor to data privacy is 
the wide scope of applications of machine learning (ML), especially 
deep learning, which evolves rapidly by taking advantage of large 
datasets. A massive number of models and applications, which re-
quire training on a large and diverse dataset (either public data or 
in- house data), are being created, shared, and applied to various ar-
eas, such as genomics (10), medical imaging (11), and health care 
(12). Nevertheless, individual privacy is being exposed to high risk, 
leading to the previously unidentified concern of privacy in modern 
artificial intelligence (AI) (13). As shown in Fig. 1A, typically, sensi-
tive data may exist in a distributed manner, where the data owners 
do not want to share the raw data for privacy reasons, while the 

aggregators want to access enough data to improve model utility. To 
balance the needs of both, we need an ML framework for distribut-
ed data that can balance utility and privacy- preserving capabilities: 
a secure and privacy- preserving ML (PPML) method.

To alleviate the leakage of privacy, the most commonly used 
strategy is the anonymization or pseudonymization of sensitive data 
before transmitting it to the data- sharing center (14). Unfortunately, 
recent studies showed that anonymization was insufficient for 
reidentification attacks (15) and linking attacks (16). To overcome 
the shortness of centralized data sharing and model training, feder-
ated learning (FL) was proposed in 2017 as a data- private collabora-
tive learning method (17). The collaborating institutions train an 
ML model with their own data in parallel and send the model up-
dates to the central server, which can aggregate all model updates 
into a consensus model without accessing the raw data. Neverthe-
less, the distributed nature of FL gives rise to previously unidentified 
threats of privacy leakage caused by potentially malicious partici-
pants (18–21) such as data poisoning attacks (22), membership in-
ference attacks (23, 24), source inference attacks (SIA) (25), and data 
reconstruction attack (26). Hence, exposing the trained model to a 
non- trusted user may also cause privacy leakage (27).

To further strengthen FL’s privacy guarantee to preserve priva-
cy, additional privacy- enhancing modules are required. Within 
the most extensively studied field, multi- party computation (MPC) 
or multi- party homomorphic encryption (MHE) frameworks use 
cryptographic techniques to protect the data while enabling the 
training of ML models with perfect accuracy. These techniques 
have been used to secure FL training (28–30) and achieve stronger 
privacy protection at the expense of computational efficiency, 
which might be difficult to satisfy for some clients in practice. 
MPC incurs a high network- communication overhead and is dif-
ficult to scale to a large number of clients, while MHE introduces 
high storage, computational overheads, and a single point of fail-
ure in the standard centralized setup, where one server receives all 
encrypted datasets to secure federated computation (31). Block-
chain is also used to secure FL training such as swarm learning 
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Fig. 1. PPML- Omics: A privacy- preserving federated machine learning method protects patients’ privacy in omic data. (A) Schematic overview of the relationships 
and interactions between distributed data owners, aggregators, attackers, and techniques in the field of secure and private Ai. (B) Schematic overview of different meth-
ods, including centrally trained method, federated learning (Fl), Fl with differential privacy (dP), and PPMl- Omics. (C) illustration of three representative tasks, datasets, 
and attacks of omic data here for demonstrating the utility and privacy- preserving capability of PPMl- Omics, including the (i) cancer classification with bulk RnA- seq, (ii) 
clustering with scRnA- seq, and (iii) integration of morphology and gene expression with spatial transcriptomic.
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(32). However, applying blockchain for deep learning with FL in 
practice is still a challenging field due to the high communication 
and computing costs (33). While cryptography- based deep learn-
ing techniques offer promising solutions to address privacy and 
security concerns in ML, they also come with certain drawbacks 
and challenges, such as communication overhead, key manage-
ment, and security. Cryptographic systems rely on secure key 
management to protect the encryption keys. If the key manage-
ment process is compromised, then the entire security of the sys-
tem can be jeopardized (34).

Unlike cryptography- based methods, there is an alternative so-
lution known as differential privacy (DP). It was introduced as a 
means to strike a balance between privacy and utility (section S1.2) 
(35). With DP, it becomes possible to safeguard privacy by sacrific-
ing a certain amount of data utility, ensuring continuous protection 
even if the model is compromised by an attacker. Consequently, DP 
has been increasingly used, similar to cryptographic methods, to 
bolster privacy protection in the context of FL. The topic of FL with 
DP was explored extensively in the literature (36–40). However, 
most of the aforementioned articles only reported theoretical anal-
yses of their framework or tested on classical datasets in the field of 
computer science, such as MNIST and CIFAR- 10, whereas only a 
few of them applied their frameworks to real biological datasets 
that had more complex properties and greater intrinsic noise.

Among those works that applied FL, MPC, MHE, and DP to 
omic data analysis, most of them used either the cryptographic tech-
niques (41–43) or the DP notion (31, 41, 44–48) to provide formal 
privacy guarantees for the participants in the research of single- 
nucleotide polymorphisms (SNPs), genome- wide association study 
(GWAS), and differential gene expression analysis (49), which are 
relatively narrow and specific problems in genomics studies, and 
whose data are obtained by postprocessing the raw sequencing data 
(section S1.3). In addition, the methods in those articles could only 
be shown to be applicable to statistical solutions or traditional ML 
solutions in GWAS. In addition to SNPs, raw sequencing data saved 
in the matrix format and generated by high- precision and quantita-
tive multidimensional sequencing technologies contain much more 
sensitive information. Apart from that, only swarm learning (32) 
discussed the application of FL with blockchain technology in the 
analysis of omic data. But with the notation of DP, to our knowledge, 
only Islam et al. (50) discussed the application of DP in DL for breast 
cancer status and cancer type classification, and drug sensitivity pre-
diction, and only one work discussed the application of FL- DP in 
cancer prediction as a solution to the competition hosted by iDASH 
(integrating Data for Analysis, Anonymization, SHaring) National 
Center for Biomedical Computing in 2020. Apart from that, there is 
no more work that has systematically studied and delved into the 
privacy protection of sequencing data from a bigger picture with the 
DP notation, even though raw sequencing data contains much more 
private information about patients than SNPs and GWAS. Meanwhile, 
the state- of- the- art work related to applying DP and MPC protocols 
in other biological tasks only reported privacy protection in medical 
imaging (51–53), which could be difficult to generalize to omic data 
analysis tasks because omic data have very different characteristics 
from imaging data.

To find a solution that is more applicable to practical scenarios of 
biological problems, we proposed a robust and powerful PPML- 
Omics method by designing a decentralized version of the differen-
tial private FL algorithm (see Materials and Methods) (Fig. 1B). In 

essence, the gradients of locally trained federated ML models are 
obfuscated through DP and decentralized randomization (DR) 
mechanisms before aggregating them at a single and non- trusted 
party. We applied PPML- Omics to analyze and protect privacy in 
real biological data from three representative omic data analysis 
tasks, which were solved with three different but representative deep 
learning models. We demonstrated how to address the privacy con-
cern in the cancer classification from TCGA with bulk RNA- seq (7), 
clustering with scRNA- seq (54), and the integration of spatial gene 
expression and tumor morphology with spatial transcriptomics (55, 
56). In addition, we examined in depth the privacy breaches that 
existed in all three tasks through privacy attack experiments and 
demonstrated that patients’ privacy could be protected through 
PPML- Omics as shown in Fig. 1C. In each of these applications, we 
showed that PPML- Omics was able to outperform methods of com-
parison, demonstrating the versatility of the method in simultane-
ously balancing the privacy- preserving capability and utility in omic 
data analysis. Last, we proved the privacy- preserving capability of 
PPML- Omics theoretically (section S1.4), suggesting the first math-
ematically guaranteed method with robust and generalizable empiri-
cal performance in the application of protecting patients’ privacy in 
omic data.

In summary, our contribution provides the following innova-
tions. We introduced the DP concept and systematically studied the 
privacy problem of multi- omics analysis in the form of three notable 
application scenarios in biology. We proposed PPML- Omics to 
achieve a better trade- off between model performance and privacy- 
preserving capabilities by designing a decentralized version of the 
differential private FL with the DR protocol based on the Fisher- 
Yates shuffle algorithm (57). In addition, we demonstrated the train-
ing of three representative deep learning models on three challenging 
tasks of omic data analysis using PPML- Omics and addressed the 
privacy concern in all three tasks, which may benefit following re-
searchers by reminding the privacy issues in analyzing omic data. 
Besides, we conducted extensive experiments and showed that 
PPML- Omics was compatible with a wide range of omic data and 
biological tasks. In addition, we examined the computational per-
formance of models trained with PPML- Omics against models 
trained centrally on the accumulated dataset and models trained 
with the FL method, FL- DP method, and FL- MHE method to dem-
onstrate the strength of PPML- Omics under various scenarios typi-
cal in omic data analysis. Last, we assessed the theoretical and 
empirical privacy guarantees of PPML- Omics and provided exam-
ples of applying state- of- the- art attacks against the models in the 
application of protecting patients’ privacy in omic data.

RESULTS
PPML- Omics and threat models
A confederation of N (≥3) hospitals wishes to train three deep 
learning models for three tasks as shown in Fig. 1 (B and C). Since 
those hospitals had neither enough data themselves nor the exper-
tise to train models on that data, they sought the support of a model 
developer to coordinate the training on a central server. PPML- 
Omics is built on this scenario to meet the needs of federal learning 
training and preserve the confidentiality of the local data from at-
tacks. In the training phase of this method, each hospital has its own 
private patient data as the data owner. We suppose that participants 
trust each other (at least semi- honest) and do not actively undermine 
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the learning protocol. Each hospital trains a local model with its 
own private data and exchanges its gradients with another hospital 
randomly with the DR protocol before sending the updates to the 
server. Under this setting, each hospital is partially trusted by each 
other such that the gradients could be exchanged with a randomly 
generated partner in each epoch while the raw data cannot be ac-
cessed directly. In each epoch of training, after the DR mechanism, 
all hospitals may not hold their own original gradients, but rather 
gradients from a randomly paired hospital. Then, all hospitals up-
load their gradients to a server that is not trusted by the hospitals as 
the server usually requires strong communication power and is con-
trolled and maintained by a third party. After integrating all gradi-
ents by the server, the server model is updated and sent to all 
hospitals to update all local models. Furthermore, individual par-
ticipants excluding all clients are assumed as potential attackers to 
actively try to extract private information from other participants’ 
data, the transmitted gradients during the training phase of the FL 
method, or the released pretrained model due to curiosity. The 
DP- based privacy enhancement technique was introduced in PPML- 
Omics to prevent such behavior. Specifically, it bounds the worst- 
case privacy loss for a single patient in the dataset and provides 
privacy guarantees to prevent model inversion/reconstruction at-
tacks on federation participants or model owners during inference 
by adding noise to the gradients passed in the FL method. PPML- 
Omics implements DP and DR protocols to provide client- level pri-
vacy guarantees, further potentially protecting patient- level privacy. 
At the end of the training, all participants will hold a copy of the 
fully trained final model.

In Application 1, the participants try to train a model for cancer- 
type classification based on gene expressions from in- house bulk 
RNA- seq data. The server would release the final trained model and 
make it available to potential users. Since the released model may 
remember a large amount of gene expression information that is 
closely related to the cancer type from the patients. We assume that 
the attacker has auxiliary information, such as knowing that patient 
1 is of cancer type A and has participated in the training of the re-
leased model. Thus, by performing the model inversion attack 
(MIA), the attacker could roughly know the gene expression of pa-
tient 1, resulting in a potential patient privacy breach.

In Application 2, the participants try to train a model for unsu-
pervised clustering based on gene expressions from scRNA- seq 
data. The server would release the final trained model and make it 
available to potential users. We assume that in a real- world applica-
tion scenario, users will have their own scRNA- seq data and also 
have our published model trained with PPML- Omics with different 
privacy budgets ϵ. The user’s treating physician needs to analyze the 
user’s clustering results from scRNA- seq data to determine the cell 
composition for medical judgment. However, the user does not 
want to present her clustering results to the treating physician with 
100% accuracy due to privacy concerns. Since the user does not 
have extensive medical knowledge, the user cannot modify the clus-
tering results by herself and can only hide some of the details of the 
clustering results by selecting different embedding models trained 
with PPML- Omics with different privacy budgets ϵ.

In Application 3, the participants try to train a model for predict-
ing the spatial gene expression based on high- resolution images of 
hematoxylin and eosin (H&E) staining tissue from spatial transcrip-
tomics data. The server would release the final trained model and 
make it available to potential users. Since the medical images used in 

the training phase contain lots of patients’ privacy, we assume that 
an attacker will use the improved deep leakage from gradient (iDLG) 
method to reconstruct the images in the training dataset by stealing 
the gradient transmitted between the client and the server, resulting 
in a potential patient privacy breach.

Application 1. Cancer classification with bulk RNA- seq
Bulk RNA- seq can directly disclose patients’ gene expression, while 
ML models trained with bulk RNA- seq can indirectly leak patients’ 
signature- expressed genes (48). Here, we collected data from TCGA 
(see Materials and Methods and table S1) and compared computing 
resource requirements, privacy- preserving capabilities, and utility 
of data of different methods by working on the cancer classification 
task with gene expression as inputs.

To study the robustness and demonstrate the advantages of com-
putational resources required by PPML- Omics, we used this task as 
a benchmark for the profiling analysis to test different methods 
(level 1: with or without FL, DP, and DR) against varied ML net-
works (level 2) (Fig. 2A). Depending on the differences in level 1, we 
tested five methods, including the centrally trained method, which 
was trained with one model on the entire dataset pooled on a single 
machine; the FL method, which was trained with separate models 
on the individual data owners’ subsets of the dataset following the 
protocol of FL; the FL- MHE method, in which the MHE mecha-
nism was integrated on the FL method; the FL- DP method, in which 
the DP mechanism was integrated on the FL method; and PPML- 
Omics, in which the DR protocol was designed to achieve a better 
trade- off between the model performance and the privacy- preserving 
capability.

Furthermore, for each method in level 1, variants based on the 
fully connected neural network (FCN) (Fig. 2A) were tested (level 
2), including the use of different numbers of hidden layers (H1: 1 
hidden layer, H3: 3 hidden layers), activation functions (R: ReLU, 
S: sigmoid), dropout layers (D0: without dropout layer, D05: with 
dropout layer and P = 0.5) and values of end- to- end ϵT, which can 
be used to further calculate the ϵl for each client in each epoch for 
the 37- class classification task, where the end- to- end privacy budget 
ϵT was a hyperparameter (see Materials and Methods) and a smaller 
ϵT means that we have stricter requirements for privacy protection, 
resulting in the need to add more noise and lower model perform-
ance. Data visualization through t- distributed stochastic neighbor 
embedding (t- SNE) showed that the use of gene expression could 
effectively distinguish between different cancer types (Fig. 2B). We 
trained all models to converge on the same dataset and measured 
the privacy- preserving capability (see Materials and Methods) and 
required computational resources, including time, random- access 
memory (RAM) and graphics processing unit (GPU) memory (sec-
tion S2.2). Following Li’s definition of the privacy loss in (58), 
we used Jensen- Shannon (JS) divergence and the P value of 
Kolmogorov- Smirnov (KS) test (PKS) between two distributions to 
quantify privacy leakage, where a larger JS divergence and a smaller 
P value indicate a more severe privacy leakage. Compared to the 
centrally trained method, the FL method did not exhibit significant 
privacy- preserving power from the JS divergence perspective (JS 
divergence > 0.1 and similar to the centrally trained method). Com-
pared to that, the integration of the DP (FL- DP method) substan-
tially improved the privacy- preserving power (JS divergence ≤ 0.01) 
as shown in Fig. 2C. The JS divergence gradually decreased as the 
end- to- end privacy budget ϵT decreased (Fig.  2F), indicating that 
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Fig. 2. Results of cancer classification with bulk RNA- seq in Application 1. (A) illustration of the relationship between methods (level 1) and networks (level 2). (B) t- Sne plot on 
all patients’ data from tcGA, each data point represents one patient and colors represent cancer types. (C) Profiling analysis of different methods, including the centrally trained 
method, the Fl method, the Fl- dP method, and PPMl- Omics against different networks [level 2 in (A)] with varying numbers of hidden layers (h1: 1 hidden layer, h3: 3 hidden layers), 
activation function (R: RelU, S: sigmoid), the dropout layer (d0: without dropout layer, d05: with dropout layer and P = 0.5). (D) the effect of the number of clients on application 1 
of four methods. (E) the effect of the value of ϵT on the averaged testing accuracy of PPMl- Omics and Fl- dP. (F) the effect of the value of ϵT on the averaged Jensen- Shannon (JS) 
divergence of PPMl- Omics and Fl- dP. (G) the distribution of z- score normalized expression of reconstructed signature genes in the target cancer type (solid lines) and other cancer 
types (dashed lines) by the centrally trained method (baseline) and PPMl- Omics from three representative cancers (cOAdReAd: colorectal adenocarcinoma, Kich: kidney chromo-
phobe, UvM: uveal melanoma). (H) the violin plot of the distribution of z- score normalized expression of reconstructed signature genes in the target cancer type and other cancer 
types specifically identified by the centrally trained method and PPMl- Omics. the test performed was a two- sided Kolmogorov- Smirnov test, and the P value annotation legend is 
the following: ∗∗∗∗P ≤ 0.00001, -  P > 0.001. exact P values are the following: Baseline only on cOAdReAd, P = 5.98454 × 10−59; PPMl- Omics only on cOAdReAd, P = 0.03325; baseline 
only on Kich, P = 3.59413 × 10−34; PPMl- Omics only on Kich, P = 0.19957; baseline only on UvM, P = 2.14898 × 10−131; PPMl- Omics only on UvM, P = 0.00144.
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adding higher noise (smaller ϵT) allowed for stronger privacy pro-
tection. As a trade- off between privacy protection and data utility, 
ϵ ≤ 5 is usually chosen in practice as in the handbook “Disclosure 
Avoidance for the 2020 Census: An Introduction” (see Materials and 
Methods) (59). However, there is no definite range of specific values 
for ϵ and the value of ϵ is dependent on the task and the data and 
needs to be selected based on a comprehensive consideration of the 
privacy- preserving requirement and the utility. In Application 1, 
ϵT  =  20 balanced the utility (Fig.  2E) and the privacy- preserving 
capability (Fig. 2F) of PPML- Omics. Therefore, with ϵT = 20, PPML- 
Omics (JS divergence = 0.00035, PKS = 0.52341) showed a clear ad-
vantage over the centrally trained model (JS divergence = 0.13769, 
PKS = 8.21642 × 10−46), the FL method (JS divergence = 0.06169, 
PKS  =  1.66231  ×  10−21), and the FL- MHE method (JS diver-
gence = 0.10567, PKS = 2.01988 × 10−39) when we need to meet both 
acceptable computational requirements (table S2) and privacy pro-
tection capabilities (Fig. 2C). Overall, PPML- Omics with ϵT =  20 
could meet the need for privacy protection under the practical sce-
nario in Application 1 and the computational resource requirements 
of PPML- Omics were notably user- friendly.

Adding noise to gradients with DP has an amplification effect 
(60), meaning that the more times of adding noise, the greater the 
effect on model performance. Consequently, we need to handle the 
situation with multiple users when integrating DP into FL methods 
in real- life scenarios. To study the impact of the number of clients 
on the model performance with different methods and demonstrate 
the advantage of PPML- Omics, we tested the model performance by 
varying the number of clients on the same dataset. Since the integra-
tion of the DP mechanism requires adding noise to the gradient, 
increasing the number of clients had a notable impact on reducing 
the model performance of the FL- DP method (Fig. 2D). As a conse-
quence, a large number of clients in real life would be the biggest 
challenge for applying the FL- DP method (52). However, the inte-
gration of the DR protocol could effectively weaken the perfor-
mance degradation caused by increasing the number of clients, 
indicating that PPML- Omics could maintain better performance 
with a larger number of clients (≥10), making it a feasible solution 
in practical applications.

Another obvious advantage of PPML- Omics was the better data 
utility, meaning that PPML- Omics could retain a higher level of 
data utility while protecting data privacy. To show the data utility of 
PPML- Omics in the cancer classification task, in the ablation study, 
we compared the averaged accuracy and macro- F1 score on the test-
ing dataset of the centrally trained method, the FL method, the FL- 
DP method, the FL- MHE method, and PPML- Omics (Fig. 2C and 
tables S2 and S5). The FL method achieved slightly worse perform-
ance (accuracy  =  0.72830) than the centrally trained method 
(accuracy = 0.73430) (P = 0.18577 for one- sided Student’s t test). 
The FL- MHE method also achieved similarly good utility (accura-
cy = 0.73902) as the centrally trained method (P = 0.76656 for one- 
sided Student’s t test). Meanwhile, the FL- DP method under ϵT = 20 
got the worst data utility (accuracy = 0.62136). With the same end- 
to- end privacy guarantee (ϵT = 20), PPML- Omics showed signifi-
cantly better utility (accuracy = 0.67713) than the FL- DP method 
(accuracy = 0.62136) (P = 0.0006 for one- sided Student’s t test). In 
summary, PPML- Omics achieved good utility while preserving the 
privacy of gene expression.

Different cancer types have specifically expressed genes, which 
can be reconstructed by the attacker from the released models. Suppose 

that the attacker has auxiliary information, such as knowing that 
patient 1 is of cancer type A and has participated in the training of 
the released model. Thus, by performing the MIA, the attacker could 
roughly know the gene expression of patient 1, thus compromising 
the potential privacy of the patient as part of the model training 
data. To investigate the privacy protected by PPML- Omics and un-
derstand the biological meaning behind the JS divergence, we ad-
opted the MIA for cancer classification models (see Materials and 
Methods). In other words, we tried to optimize a gene expression 
vector that could give the highest prediction probability for a par-
ticular cancer type on the target model by using MIA. Then, we ana-
lyzed the significantly expressed genes in the optimal gene expression 
vector. If the significantly expressed genes were cancer type- specific 
(with high expression in the target cancer type and low expression 
in other cancer types), then we could conclude that the target model 
leaked privacy. As shown in Fig.  2G, the most significant genes 
reconstructed from the centrally trained method with H3R1D0 
showed significantly different distribution (JS divergence = 0.13769, 
PKS = 8.21642 × 10−46) on the z- score normalized real expression 
between two groups (solid lines for the target cancer type and 
dashed lines for other cancer types) compared to the one with 
PPML- Omics (ϵT = 20) (JS divergence = 0.00035, PKS = 0.52341), 
suggesting that the MIA on the centrally trained method could 
reconstruct genes with significantly different expression levels 
(privacy leakage) on the target cancer type and other cancer types. 
In other words, based on the published centrally trained models, the 
attacker could reconstruct the corresponding specifically expressed 
genes for each cancer type. In contrast, it was impossible to accu-
rately reconstruct the corresponding specifically expressed genes for 
each cancer type from the published models using PPML- Omics. A 
significant difference in the expression distribution of genes specifi-
cally reconstructed by the centrally trained method in the target 
cancer type and other cancer types could be observed (COAD-
READ: PKS = 5.98454 × 10−59, KICH: PKS = 3.59413 × 10−34 and 
UVM: PKS = 2.14898 × 10−131) (Fig. 2H), implying that genes recon-
structed for each cancer type tended to have a higher expres-
sion in the corresponding cancer type. In contrast, the expression 
distribution of genes reconstructed by attacking PPML- Omics 
was very similar in the target cancer type and in other cancer 
types (COAD- READ: PKS = 0.03325, KICH: PKS = 0.19957 and 
UVM: PKS = 0.00144) (Fig. 2H), implying that the genes recon-
structed for each cancer type were not strongly correlated with the 
cancer type in terms of expression. A similar observation could be 
found across all cancer types that reconstructed genes by attacking 
the model trained with the centrally trained method showed signifi-
cantly different expression levels between the target cancer type and 
other cancer types whereas reconstructed genes by attacking the 
model trained with PPML- Omics did not show such a significant 
difference (section S2.3, figs. S1 to S3, and tables S3 and S4). Overall, 
we showed that PPML- Omics protects genomic privacy by obfus-
cating sensitive gene identification.

Cryptography- based FL method could protect the security dur-
ing the training phase, but this could also mean no protection at all, 
especially when the key leaks. We implemented an FL method based 
on MHE, in which models and parameters were encrypted during 
the communication, training, and inference phases using the homo-
morphic encryption (HE) method based on the Cheon- Kim- Kim- 
Song (CKKS) cryptographic scheme (see Materials and Methods) 
(61). The clients and server have public and private keys for secure 
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encryption and decryption. As shown in tables S2 and S5, the mod-
el trained with the FL- MHE method achieved similar accuracy (ac-
curacy  =  0.73902) as the centrally trained method. Under the 
scenario of Application 1, the model could not be decrypted if as-
suming that the attacker could not obtain the public and private 
keys, thus the security and privacy are completely protected. Once 
the attacker obtained the public and private keys, the server model 
could be fully decrypted and the privacy leakage (JS diver-
gence = 0.10567, PKS = 2.01988 × 10−39) was as serious as that of the 
centrally trained method as shown in Fig. 2C, fig. S2, and table S5 
even though the encryption and decryption processes introduced 
approximation errors and protected very little privacy. Meanwhile, 
the FL- MHE method required additional computational resources 
due to the encryption and decryption as shown in table S2. Overall, 
PPML- Omics showed a clear advantage over the FL- MHE method 
under our scenario in Application 1.

Application 2. Clustering with scRNA- seq data
scRNA- seq is a revolutionary technology to quantify gene expres-
sion in thousands and even millions of cells in parallel, which is 
powerful in identifying cell populations and dissecting the compo-
sition of each population in biological samples (62). Applying 
scRNA- seq on primary tumors is not only able to decipher tumor 
cell heterogeneity (63) but can also uncover the specificity of tumor 
microenvironment (64) in each patient, which may lead to a per-
sonalized treatment strategy (65). For instance, immune infiltra-
tion in the tumor which could be determined by scRNA- seq is a 
good response indicator to immune blockade- based therapy. Thus, 
information on cell populations is critical in protecting patients’ 
privacy when analyzing scRNA- seq data. Using the extracted fea-
tures rather than the direct gene expression may avoid the leak of 
the specifically expressed gene while still harboring the informa-
tion for each cell population in the patients. Even so, obtaining ac-
curate cell population results on patients’ tissue could also violate 
privacy. Here, we used the low- dimensional features extracted from 
gene expression vectors of scRNA- seq data by Auto- encoder as 
input for K- means clustering (Fig.  3A). We then applied PPML- 
Omics to see how it protected patients’ privacy from the results of 
clustering, by evaluating the data utility and the privacy- preserving 
capability in terms of cell type classification and composition quan-
tification based on clustering.

The number and composition of cells included in the scRNA- seq 
data vary greatly depending on the sample. To assess the robustness 
of PPML- Omics for different sample sizes in the clustering task, we 
evaluated it on three benchmark datasets (Yan, Pollen, and Hrvatin) 
with varying cell numbers, ranging from 90 to 48,266 (table S8). Fol-
lowing Tran’s work (66), we compared the adjusted Rand index 
(ARI), normalized mutual information (NMI), cluster accuracy 
(CA), and Jaccard index (JI) (see Materials and Methods) on the 
three datasets with different methods (Table 1), including the cen-
trally trained method, the FL method, the FL- DP method, the FL- 
MHE method, and PPML- Omics, where a larger value means a 
better clustering result. For all three datasets, PPML- Omics achieved 
promising performance compared to the FL- DP method under all 
four evaluation metrics (Yan: P = 5.23 × 10−3, Pollen: P = 9.12 × 10−4, 
and Hrvatin: P = 1.01 × 10−5 from one- sided Student’s t test) with 
the same privacy budget (ϵT = 5). Also, the difference between the 
clustering result from PPML- Omics and that from the centrally 
trained model is relatively minor (Yan: P = 0.048, Pollen: P = 0.194, 

and Hrvatin: P = 0.012 from one- sided Student’s t test), indicating 
that our framework even had the potential to approach the centrally 
trained method in clustering task. To ensure that the performance 
of PPML- Omics was at the same level as those commonly ac-
knowledged tools in the clustering task with scRNA- seq data, we 
compared PPML- Omics with the existing state- of- the- art tools, 
including Seurat (67), SC3 (68), CIDR (69), and SINCERA (70) 
(sections S3.2 and S3.3, fig. S4, and table S7). PPML- Omics also 
achieved competitive utility, proving that our method achieved 
similar performance as the most commonly used tools for the clus-
tering task. To further investigate the effect of FL, DP, and DR pro-
tocols on the clustering task, we conducted an ablation study 
(Fig. 3B) [centrally trained method at the first column, FL method 
(ϵT = 5, ϵl = 0.23) at the second column, FL- DP method (ϵT = 5, 
ϵl = 0.33) at the third column, and PPML- Omics at the fourth col-
umn] on these three datasets of different sizes and visualized the 
clustering results with Uniform Manifold Approximation and Pro-
jection (UMAP) algorithm that projected the internal representa-
tions into a two- dimensional space. In conclusion, PPML- Omics 
could qualitatively and quantitatively compete or even outperform 
other methods in terms of utility.

When we obtain the scRNA- seq data of patients, we can learn the 
composition of the cells based on the clustering results. In extreme 
cases, suppose the clustering method is good enough and can 100% 
correctly distinguish different types of cells into clusters, it might 
potentially violate the patient’s privacy by leaking some sensitive 
sub- cell types. Therefore, it is necessary to reasonably adjust the 
resolution of the clustering method to properly hide some small 
clusters (sub- cell types) from the final clustering results to achieve 
privacy protection according to the prior privacy requirements. In 
other words, for a method, if we cannot observe some sensitive 
small clusters (sub- cell types) in the final clustering results, then we 
could conclude that the method protects the patient’s privacy. In ad-
dition, if the clustering results for major cell types are reasonable, 
then we could conclude that the method preserves an acceptable 
degree of data utility while protecting privacy. To study the privacy- 
preserving power of PPML- Omics, we analyzed a public scRNA- seq 
dataset with 43,817 cells from 10 patients with colon cancer (71), in 
which the cells were classified into five major cell types (hB: B cells, 
hI: innate lymphoid cells, hM: myeloid cells, hT: CD4+ T cells, and 
CD8+ T cells) and 38 sub- types (section S3.5 and tables S9 and S10). 
We applied three methods for clustering, namely, the centrally 
trained method and two of PPML- Omics with different noise levels 
(ϵT = 10, ϵl = 0.25) and (ϵT = 5, ϵl = 0.12). With two patients (P0408 
and P0410) as examples, the major cell types were successfully iden-
tified with all three methods (Fig. 3C), indicating that the overall 
clustering results of the three methods were reasonable, thus pre-
serving the utility of the data. However, the clustering results from 
the three methods showed notable differences in the resolution of 
the sub- cell types and we could use it as an evaluation of the privacy- 
preserving capability similar to the JS divergence in Application 1. 
Comparing both our methods (ϵT  =  10, ϵl  =  0.25) and (ϵT  =  5, 
ϵl = 0.12) with the centrally trained method, four subclusters (sub- 
cell types) were undetected for P0408 and 6 subclusters (sub- cell 
types) were undetected for P0410 (tables  S9 and S10), suggesting 
that the local differences between subclusters (sub- cell types) could 
be diluted due to the noise added in PPML- Omics and then those 
sub- cell types could be integrated into major clusters, thus achieving 
privacy protection as a consequence.
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Fig. 3. Results of clustering with scRNA- seq in Application 2. (A) Architecture of the backbone (Auto- encoder). Gene expression vectors were fed into the Auto- 
encoder for feature reduction and selection, after which the low dimensional features were used for the K- means clustering. (B) the clustering results visualized by the 
Uniform Manifold Approximation and Projection (UMAP) of three datasets with an increasing number of samples (Yan with 90 samples from 6 cell types, Pollen with 301 
samples from 11 cell types, and hrvatin with 48,266 samples from 8 cell types) generated by four methods, including the centrally trained method, the Fl method, the 
Fl- dP method, and PPMl- Omics. For these three datasets, all clustering results given by PPMl- Omics showed a similar visual pattern to the centrally trained method, in-
dicating the perfect utility of PPMl- Omics. (C) the clustering results visualized by the UMAP of two patients (P0408 and P0410) and the proportion plot of major clusters 
and subclusters generated by different methods, including the centrally trained method, and PPMl- Omics with (ϵT = 10, ϵl = 0.25) and (ϵT = 5, ϵl = 0.12), indicating that 
PPMl- Omics could protect patients’ privacy by removing the local information of subclusters.
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Using a larger end- to- end ϵT means better utility and greater 
resolution on the clustering results (more sensitive subclusters could 
be observed) while using a smaller ϵT means that we could sacrifice 
a certain level of utility to protect sensitive subclusters in the cluster-
ing results. For potential users of PPML- Omics, the value of ϵT 
should be adjusted according to the needs of the actual application 
scenario to achieve both good utility and privacy protection as 
shown in (fig. S8).

Application 3. Integration of tumor morphology and gene 
expression with spatial transcriptomics
Sequencing data in Applications 1 and 2 could reveal much sensi-
tive information about patients, and the potential risk of privacy 
disclosure is also very high for spatial transcriptomics as one of the 
highest- resolution sequencing technologies. In addition, spatial 
transcriptomics requires the usage of tissue images, which adds 
additional privacy leakage to some extent. ST- Net (56) is an ML 
model for predicting local gene expression from H&E- stained pa-
thology slides trained on a dataset of 30,612 spatially resolved gene 
expression data matched to histopathology images from 23 pa-
tients with breast cancer. Unlike the classical task of spatial tran-
scriptomics, ST- Net predicts the spatially resolved transcriptome 
of tissue directly from tissue images, while the gene expression 
measured from spatial transcriptomics is used as the ground truth 
in the training phase. Here, to show that PPML- Omics realized 

competitive utility and to investigate how PPML- Omics protects 
privacy in those histopathology images on this task, we applied 
PPML- Omics to integrate tumor morphology and gene expression 
with spatial transcriptomics by incorporating the ST- Net model as 
the backbone network into PPML- Omics and compared with 
Hist2ST (72) and Hist2Gene as shown in Fig. 4A and Table 2.

To demonstrate that ST- Net under PPML- Omics has the same 
level of utility compared to pure ST- Net in predicting local gene ex-
pression from pathology slides, we visualized the prediction results 
and quantitatively compared the similarity between the predicted 
results and the ground truth by calculating the mean square error 
(MSE) as an evaluation metric, where a larger MSE means a worse 
prediction. From the visualization as shown in Fig. 4B, both PPML- 
Omics (at the sixth row) and the centrally trained method (at the 
fourth row) obtained good results from a visual perspective com-
pared to the ground truth (at the third row), effectively predicting 
the local expression of FASN and other cancer marker genes, includ-
ing HSP90AB1 and PABPC1 (section S4.2 and figs. S6 and S7) with 
the histopathology images of five patients (BT23269 C1, BT23277 
E1, BT23377 C1, BT23901 C2, and BT23944 E1) as inputs, which 
could be supported by the sequencing data from spatial transcrip-
tomics (ground truth). Furthermore, the local gene expressions pre-
dicted by PPML- Omics and the centrally trained method were both 
aligned well to the tumor region (black) and normal region (white) 
annotated in the annotation (at the second row), indicating that the 

Table 1. Comparison of clustering result on multiple scRNA- seq datasets. 

Dataset Method ARI NMI CA JI

Baseline (centrally 
trained)

0.707 0.809 0.777 0.616

Fl 0.644 0.774 0.724 0.555

Yan (90 samples 6 cell 
types)

Fl + Mhe 0.617 0.812 0.711 0.526

Fl + dP 
(ϵT = 5,ϵl = 0.23)

0.560 0.727 0.689 0.479

PPMl- Omics (ϵt = 5, 
ϵl = 0.33)

0.636 0.775 0.722 0.549

Baseline (centrally 
trained)

0.847 0.898 0.883 0.759

Fl 0.785 0.872 0.824 0.673

Pollen (301 samples 11 
cell types)

Fl + Mhe 0.731 0.850 0.766 0.611

Fl + dP (ϵT = 5, 
ϵl = 0.23)

0.748 0.846 0.801 0.632

PPMl- Omics (ϵt = 5, 
ϵl = 0.33)

0.802 0.869 0.836 0.699

Baseline (centrally 
trained)

0.816 0.860 0.851 0.741

Fl 0.742 0.835 0.775 0.649

hrvatin (48,266 samples 
8 cell types)

Fl + Mhe 0.805 0.815 0.831 0.731

Fl + dP (ϵT = 5, 
ϵl = 0.23)

0.737 0.764 0.790 0.645

PPMl- Omics (ϵt = 5, 
ϵl = 0.33)

0.737 0.811 0.784 0.645
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Fig. 4. Results of integration of tumor morphology and gene expression with spatial transcriptomics in Application 3. (A) Pipeline for predicting local 
gene expression from high- resolution tissue image referred by St- net. the patches (224 × 224) extracted from the original image were fed into the densenet121 
and the local expression of selected cancer marker genes was predicted and compared with the real local expression (ground truth) from the spatial transcrip-
tomics data. (B) the results of five samples (Bt23269 c1, Bt23277 e1, Bt23377 c1, Bt23901 c2, and Bt23944 e1) showed the original image, the binary labels of 
the tumor (black) and normal regions (white), the real expression of FASn, and predicted results by the centrally trained method, Fl- dP (ϵT = 5, ϵl = 0.16), and 
PPMl- Omics (ϵT = 5, ϵl = 0.22). All predictions show a similar visual pattern with the ground truth and both the centrally trained method and PPMl- Omics give 
similar good performance in terms of MSe. (C) image reconstruction attack with improved idlGs on the centrally trained method, Fl- dP, and PPMl- Omics.
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ST- Net integrated with PPML- Omics still had the power to predict 
the local gene expression accurately from tissue images. In addition, 
with the same small privacy budget ϵT = 1 and 5, the prediction of 
PPML- Omics was significantly more accurate (MSE =  0.98808 at 
ϵT  =  1 and MSE  =  0.93005 at ϵT  =  5) than the FL- DP method 
(MSE = 1557.54465 at ϵT = 1 and MSE = 1.29931 at ϵT = 5) with 
P = 8.06039 × 10−29 and P = 3.10063 × 10−14 for one- sided Student’s 
t tests respectively and achieved close performance of the centrally 
trained method (MSE  =  0.90904) (Table  2 and table  S13). Thus, 
PPML- Omics achieved good utility in Application 3.

It is well known that medical imaging data contains much poten-
tially sensitive information (11), such as tissue patterns and lesions, 
which could compromise patients’ privacy. Several studies have 
shown that ML models trained based on medical images remember 
much information about the images in the training dataset, and at-
tackers could perform image reconstruction attacks with the pub-
lished ML models to obtain the original training images (73–75). To 
see whether PPML- Omics protects privacy in the histopathology im-
ages compared to the centrally trained method, we used the iDLG 
(76, 77) (see Materials and Methods) to simulate an attacker recon-
structing the training images by stealing the gradients passed be-
tween machines under the FL framework (approximating a centrally 
trained method when the number of clients is 1). In each attack, we 
initialized a noisy input (dummy data), used the local gene expres-
sion as the ground truth, computed the prediction of the model on 
the noisy input, and calculated the gradient. Then, we updated the 
noisy input with the gradient. In other words, same as in Application 
1, we were trying to optimize an input image that could get the most 
similar prediction results to the ground truth. We performed the 
iDLG attack separately for the centrally trained method and PPML- 
Omics and showed the input image every 1000 iterations, as shown 
in Fig. 4C. Notably, in terms of visual results, the iDLG attack could 
effectively reconstruct the training images with the centrally trained 
method, while in PPML- Omics, the iDLG attack was effectively 
blocked due to the addition of noise to the gradients with the DP 
mechanism. Overall, PPML- Omics protected privacy by blocking 
the reconstruction of sensitive histopathology images.

Theoretical proof of the privacy- preserving power 
of PPML- Omics
With the three applications above, we have empirically demonstrat-
ed our method’s privacy- preserving capability and utility. We fur-
ther theoretically proved the privacy- preserving capability of 
PPML- Omics with the DP notation. The central DP (CDP) model 
and the local DP (LDP) model are two commonly acknowledged 
models with the notation of DP. In the CDP model, a server trusted 
by users collects users’ raw data (e.g., local updates) and executes a 
private mechanism for deferentially private outputs. The privacy- 
preserving goal is to achieve indistinguishability for any outputs 
w.r.t. two neighboring datasets that differ by replacing one user’s 
data. The definition of DP (definition 4 in section S1.2) requires that 
the contribution of an individual to a dataset has not much effect on 
what the adversary sees. Compared to CDP, LDP has a stronger no-
tion of privacy. In LDP, each user’s data are required to be perturbed 
to protect privacy before collection. The CDP model assumes the 
availability of a trusted analyzer to collect raw data, while the LDP 
model does not rely on any trusted party because users send ran-
domized data to the server. The CDP model protects the calculation 
result in the analyzer, so users need to trust the central server and 
send raw data to the server, which allows greater accuracy but re-
quires a trusted analyzer which is impractical in most real cases. In 
the LDP model, we protect the data information in the single local 
device, so users only need to trust their single device and randomize 
local data before sending them to the analyzer. Although a trusted 
central analyzer is not required, the utility of the method is limited 
because we do lots of randomness on local data. Therefore, the ad-
vantage of using the DR protocol (definition 6 in section S1.4) is that 
we could balance the strength in both CDP and LDP, i.e., good per-
formance of accuracy in the CDP model and strong privacy in the 
LDP model without relying on any trusted central party.

Under the FL, each client trains its model locally and sends the 
update in the form of gradients to a central server that would ag-
gregate those updates into the central model. After updating the 
central model, the central server broadcasts the new model weight 
to all clients for updating all clients (Algorithm  1). With the 

Table 2. Comparison of different methods in the integration task of spatial gene expression and tumor morphology with spatial transcriptomics. 

Method Averaged testing MSE

hist2St, centrally trained 0.91053

hist2Gene, centrally trained 0.88285

Baseline (St- net, centrally trained) 0.90904

Baseline + Fl 0.93120

Baseline + Fl + Mhe 0.90904

Baseline + Fl + dP (ϵT = 0.1, ϵl = 0.003) nA

Baseline + Fl + dP (ϵT = 0.5, ϵl = 0.016) nA

Baseline + Fl + dP (ϵT = 1, ϵl = 0.032) 1557.54465

Baseline + Fl + dP (ϵT = 5, ϵl = 0.160) 1.29931

PPMl- Omics (ϵt = 0.1, ϵl = 0.004) 3.22789

PPMl- Omics (ϵt = 0.5, ϵl = 0.022) 1.08788

PPMl- Omics (ϵt = 1, ϵl = 0.045) 0.98808

PPMl- Omics (ϵt = 5, ϵl = 0.225) 0.93005
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integration of DP in the FL framework, we manually chose several 
end- to- end ϵT and set δ as discussed in Materials and Methods. 
Given ϵT and δT, we applied the analytic Gaussian mechanism to 
calculate the optimal σ for perturbation (78) as in Algorithm 2. In 
other words, we could calculate the amount of noise that needs to be 
added based on the given ϵT and δl. The privacy guarantee of the 
analytic Gaussian mechanism was given in (theorem  1 in sec-
tion S1.4). Thus, we applied the analytic Gaussian mechanism on a 
single client with the privacy guarantee proved to realize the DP 
mechanism.

Based on the postprocessing property (lemma 1 in section S1.4), 
the protocol P (defined in definition 6 in section S1.4) achieves the 
same privacy level as M (defined in lemma 1 in section S1.4) because 
A is executed by an untrusted analyzer, without protecting users’ 
privacy. We wanted to obtain M = S ∘ Rn that could satisfy (ϵc, δc)- 
DP, meaning that we achieved the same privacy guarantee as the 
CDP. Thus, we focused on analyzing the indistinguishability for 
M(X) and M(X′) where Xand X′ differ in one client’s local vector 
such that we achieved privacy- preserving on the client level. 
Erlingsson et al. (79) proved that the privacy of M could be ampli-
fied. In other words, when each user applies the local privacy budget 
ϵl in R, M can achieve stronger privacy of (ϵc, δc)- DP with ϵc < ϵl. 
Hence, the DR protocol has a larger privacy budget for a local single 
client and needs less noise to achieve the same privacy model com-
pared with the LDP model. In practice, we defined a privacy budget 
ϵc in a single epoch, and then we amplified this budget to the local 
client model with the local privacy budget ϵl.

Given target privacy parameters 0 < ϵT < 1 and 0 < δ < 1, to 
ensure (ϵT, δT)- DP over T mechanisms, it suffices that each mecha-
nism is (ϵc, δc)- DP, where ϵc =

ϵT

2

√

{

2Tln

(

2

δT

)}

 and δc =
δT

2T
 . From the 

advanced composition theorem and the corollary (section S1.4), 
we can guarantee that Algorithm  2 satisfies (ϵT, δT)- DP after 
T epochs.

DISCUSSION
Overall, PPML- Omics is universal, meaning that PPML- Omics 
could be integrated with any ML model and applied to various bio-
logical problems. Thus, we applied PPML- Omics to three different 
ML models from simple to complex, including FCN, Anto- encoder, 
and DenseNet- 121. Applying PPML- Omics to more complex deep 
learning models means that more computational resources are re-
quired to add noise, which may introduce more uncertainty in the 
performance of the models. Hence, whether PPML- Omics can be 
applied to more complex ML models and used to protect privacy in 
more complex data requires further research in the future. Further-
more, in addition to the three distinct resolutions of sequencing 
data analysis tasks discussed in this work, PPML- Omics holds the 
potential for application in other relevant fields, such as the integra-
tion of eQTL data in future endeavors.

Batch effects are a prevalent issue when dealing with multi- 
institutional omics data and necessitate careful consideration dur-
ing data analysis. In traditional scenarios, omics data from various 
institutions are combined, and batch effects are mitigated using es-
tablished methods before proceeding with the analysis. However, in 
the context of FL, where data remains distributed across multiple 
participants or centers, batch effects pose a distinct challenge that 

requires tailored solutions to ensure the robustness of the trained 
models. FL provides a framework for addressing batch effects, both 
through supervised and unsupervised learning methods. When 
these methods are extended to FL, they converge on a common ob-
jective: To identify and emphasize shared biological features across 
different batches, thereby facilitating the removal of batch effects 
and enhancing the model’s predictive capabilities. Furthermore, 
note that batch effects are also a well- recognized challenge within 
the FL domain, and several solutions have been developed. Ap-
proaches such as FedBN in (80) and in (81) have been proposed to 
mitigate batch effects. In the case of PPML- Omics, which was devel-
oped on FL, it can also effectively address batch effects by incor-
porating these various solutions and methodologies by default 
(fig.  S11). This ensures that PPML- Omics is equipped to handle 
batch effects in a decentralized and collaborative data analysis 
setting.

The integration of the DP mechanism requires additional com-
putational resources, such as more GPU memory consumption and 
computation time, for calculating the magnitude of the noise and 
the gradient calculation with noise. However, we demonstrated in 
our simulated experiments that the computational burden imposed 
by PPML- Omics was insignificant compared to centrally trained 
methods, implying that potential users could easily deploy PPML- 
Omics for privacy- preserving omic data analysis without upgrading 
their existing computational devices.

It is commonly acknowledged that privacy protection and utility 
are two conflicting objectives. Thus, it is challenging to find a bal-
ance that allows the model to protect privacy without overly damag-
ing the usability of the data. Therefore, PPML- Omics balances the 
privacy- preserving capabilities with utility as much as possible 
while also leaving some of the decision- making to our potential us-
ers. Depending on the user’s actual needs, the user can adjust the 
end- to- end privacy budget (ϵT) in the method during the training 
phase or select the released model trained with PPML- Omics under 
different ϵT to achieve different levels of privacy protection. We ac-
knowledge the fact that PPML- Omics cannot automatically select 
ϵT for potential users for specific biological problems but requires 
the user to manually select ϵT is a major weakness of PPML- Omics. 
However, there are potential reasons for this as different biological 
data have different characteristics as well as various inherent noise, 
and different deep learning models could tolerate different levels of 
noise. For example, for the three applications, we selected different 
values of ϵT to achieve appropriate privacy protection (e.g., ϵT = 20 
in Application 1, ϵT = 5 in Application 2, and ϵT = 5 in Application 
3). It may take more time for users to try different values of ϵT to 
choose an appropriate one that fits the privacy requirement the most 
when applying PPML- Omics in practice. We also provided the rela-
tionship between various evaluation metrics and the value of ϵT in 
all three applications as a reference (Fig.  2, E and F, and figs.  S8 
and S9).

In summary, we have proposed a secure and PPML method by 
designing a decentralized version of the differential private FL algo-
rithm (PPML- Omics). Besides, we have applied this method to ana-
lyze data from three representative omic data analysis tasks, which 
are solved with three different deep learning models, revisited and 
addressed the privacy concern in the cancer classification from 
TCGA with bulk RNA- seq, clustering with scRNA- seq, and the inte-
gration of spatial gene expression and tumor morphology with spa-
tial transcriptomics. Moreover, we examined in depth the privacy 
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breaches that existed in all three tasks through privacy attack experi-
ments and demonstrated that patients’ privacy could be protected 
by PPML- Omics. In addition, we proved the privacy- preserving 
capability of PPML- Omics theoretically, suggesting the first mathe-
matically guaranteed method with robust and generalizable empiri-
cal performance in protecting patients’ privacy in omic data. We 
believe that PPML- Omics will attract the attention of future re-
searchers on biological issues regarding data privacy and also 
try to protect data privacy by applying PPML- Omics in research. 
Our method’s modularized and extendable nature has great 
potential to be developed collaboratively for different biological 
tasks and deep learning models and will shed light on the appli-
cation and development of deep learning techniques in the pri-
vacy protection of biological data.

MATERIALS AND METHODS
Dataset preparation
For Application 1, we used TCGA dataset, accessible through the 
Genomic Data Commons Data Portal, and built our methods 
across 37 cancers with a total number of 13,057 patients. Each pa-
tient had the expression vector of 20,531 genes, and each expres-
sion vector was rescaled in logarithm with 10 according to the 
following equation, to speed up learning and lead to faster conver-
gence. Also, the normalization procedure ensured that the gene 
expression contributing to the model was on an equal scale. Pa-
tients were randomly divided into a training dataset (80%) and a 
test dataset (20%) and the random split was repeated five times 
(section S2.1).

For Application 2, to assess the representation from our privacy- 
preserved model on the scRNA- seq data, we tested our model on 
three published datasets with different sample sizes, all of which 
have expert- annotated labels from single- cell Decomposition using 
Hierarchical Autoencoder (scDHA) (66). The Yan (82) dataset re-
fers to the human preimplantation embryos and embryonic stem 
cells. In this dataset, 90 cells were sequenced with the Tang proto-
col. We first log- transformed the gene expression values selected 
for the highly variable genes. Last, we scaled the dataset to unit 
variance and zero mean. The Pollen (83) dataset was sequenced 
with the SMARTer protocol. It contains 301 cells in the developing 
cerebral cortex from 11 populations. We downloaded it from the 
Hemberg Group’s website (https://hemberg- lab.github.io/scRNA.
seq.datasets/human/tissues/) and removed the low- quality data 
and cells with more mitochondrial genes and spike- in RNA. Then, 
we selected highly variable genes after logarithmic transformation. 
The Hrvatin (84) dataset contains 48,266 cells from 6-  to 8- week- old 
mice, which were sequenced by DropSeq. After filtering the low- 
quality data, we performed the aforementioned logarithmic trans-
formation, normalization per cell count, and highly variable gene 
selection steps. To further validate the privacy- preserving ability of 
PPML- Omics, we selected the scRNA- seq data on immune and 
stromal populations from patients with colorectal cancer (71). We 
visualized the global and local clusters regarding their specific mac-
rophage and conventional dendritic cell subsets. The single- cell 
data were selected from patients with informed mechanisms of 
myeloid- targeted therapies in colon cancer, which can be found in 
“Data and materials availability” in Acknowledgements. After 

quality control, each patient has around 5000 cells and correspond-
ing 13,538 genes (section S3.1).

For Application 3, to test the capability of our method in spatial 
transcriptomics, we used a spatial transcriptomics dataset of 30,612 
spots, including 23 patients with breast cancer with four subtypes: 
luminal A, luminal B, triple- negative, and human epidermal growth 
factor receptor- 2 (HER2)–positive (56). There were three high- 
resolution images of H&E staining tissue and their corresponding 
gene expression data for each patient. The number of spots for each 
replicate ranged from 256 to 712 depending on the tissue size and 
the diameter of a single spot was 100 μm arranged in a grid with 
200 μm as the center- to- center distance. There were 26,949 mRNA 
species detected across the dataset and each spot was represented as 
a 26,949- dimensional vector containing the elements denoted by 
the number of gene counts (section S4.1).

Deep learning model design and training
All codes were implemented using the PyTorch library (85) and pro-
cessed on one machine with 2 NVIDIA V100 GPUs and 252G 
RAM. All experiments were repeated on the pre- split training and 
testing batches until fully converged on the testing dataset, and all 
reported performance was averaged over five random splits.

For Application 1, we applied an FCN with three hidden layers as 
our benchmark ML network for PPML- Omics. The gene expression 
vector was fed into the network, and a ReLU layer was applied after 
each hidden layer to provide nonlinearity. Last, a soft- max layer was 
attached to the last hidden layer to get the final prediction. With 
PPML- Omics, the network was trained in a federated, secured, and 
privacy- preserving procedure to guarantee utility while preserving 
privacy at the same time. The multi- class cross- entropy loss defined 
the loss function

where M represents the number of cancers (classes), which is 37 for 
this task. Correspondingly, yic ∈ {0, 1} represents the classification 
result for the ith sample, with 1 for a positive prediction, and 0 for a 
negative prediction. pic stands for the probability of the ith sample to 
be in class c.

For Application 2, the unsupervised framework for scRNA- seq 
clustering is composed of two steps. We first trained the Auto- 
encoder with the fixed number of gene expression value y as the in-
put and outputted ŷ  with the same size as the input. We denoted d 
as the dimension of each patient’s gene expression vector and N as 
the number of clients. We then optimized the Auto- encoder with 
the Mean squared error (MSE) loss

Then, we extracted the central feature vector and clustered it with 
K- means clustering.

For Application 3, we used ST- Net (56) as our baseline deep 
learning network and integrated it into PPML- Omics. In the ST- 
Net, we used DenseNet- 121 to detect the fine- grained spatial het-
erogeneity within the tumor tissue. Small patches (224 × 224 pixels) 
were extracted from the whole- slide images (~10,000 × 10,000 

Xinput = log10(Xoriginal)

L = −
1

N

∑

i

M
∑

c=1

yiclog(pic)

L(y, ŷ) =
1

N

N
∑

n=1

d
∑

c=1

(y− ŷ)2
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pixels) centered on the spatial transcriptomics spots, and each 
patch went through the pretrained DenseNet- 121 network for 
training and predicting the preselected 250 genes with the highest 
mean expression.

Performance assessment
To assess the performance of models in Application 1, we adopted 
metrics including accuracy and macro- F1, which are defined below

where TP, TN, FP, and FN stand for true positive, true negative, false 
positive, and false negative, yi is the predicted value, ỹ

i
 is the real 

value, and n is the total number of samples.
To evaluate PPML- Omics on Application 2, we applied cluster-

ing ARI score, NMI, CA, and JI to evaluate our method’s utility 
comprehensively. The evaluation metrics between the predicted 
cluster B with the ground truth cluster A in ARI, NMI, CA, and JI 
are defined below

where A is the class label, B is the cluster label, H(·) is the entropy, 
and I(A; B) is the mutual information between A and B. In the defi-
nition of CA, P stands for the set of all permutations in [1 : K] where 
K is the number of clusters, and n is the sample size.

To measure the similarity between the predicted gene expression 
and the ground truth in Application 3, we used the MSE as the eval-
uation metric

Implementation of federated learning framework
As shown in Algorithm 1, the FL framework aimed at ensuring data 
privacy and security along with the improvement of the AI model 
based on joint data sources from multiple clients around the world. 
We first initiated multiple data sources as our clients. Since the es-
sence of FL is the union of samples, each client first needs to down-
load the model from the server and initiate their client model with 
the server weight. Then, each participant can use local data to train 
the model, calculate their gradient, and upload it to the server. The 
server needs to aggregate the gradient of each client to update the 
server model parameters. In this process, each client is treated with 
the same and complete model, and there is no communication and 
no dependence among clients. Therefore, each client can also make 
independent predictions during the prediction.

Implementation of differential private model training
To add noise to the gradient, we used the calibrated analytic Gauss-
ian mechanism to calculate the value of σ in the Gaussian distribu-
tion based on the values of ϵ and δ. In each epoch, after computing 
the gradient update for each client, we clipped the gradient to ensure 
a finite upper and lower bound and then added noise to each value 
in the gradient that fitted the previously defined Gaussian distribu-
tion as shown in Algorithm 2. A common paradigm for approximat-
ing a deterministic real- valued function  f : D → R with Gaussian 
differentially private mechanism is via additive noise calibrated to 
f ’s sensitivity Sf, which is defined as the maximum of the l2 norm 
‖ f (D) − f (D′)‖2 where D and D′ are neighboring inputs. Proving 
the DP guarantee in the SGD algorithm requires bounding the influ-
ence of each sample on the gradient. Since there was no prior bound on 
the size of the gradients, we clipped each gradient in the l2 norm by C.

Implementation of DR protocol
In a practical scenario, before the end of each epoch, each client 
sends the gradient information to the server, while the server knows 
where each gradient information comes from, providing the possi-
bility of privacy leakage. With DR protocol, we can still ensure that 
the gradients received by the server are randomly shuffled. As shown 
in Algorithm 2, in each epoch of training, after the DR mechanism, 
all clients may not hold their own original gradients, but rather gra-
dients from a randomly paired client. Then, all clients upload their 
gradients to the server.
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σ Selection with analytic Gaussian DP mechanism
To achieve end- to- end (ϵT, δT)- DP for T iterations in total with 
PPML- Omics, we need to achieve (ϵc, δc)- DP for the server in each 
epoch where ϵc =

ϵT

2
√

2Tln(2∕δT )
 and δc =

δT

2T
 , and further achieve (ϵl, 

δl)- DP for each client at each epoch, where ϵl =
ϵc

√

K
√

ln(2∕δc)
 and δl =

δc

K
 . 

With the values of ϵl, δl, we could calculate the standard deviation σ 
of Gaussian noise needed in each epoch to each gradient transmit-
ted from each client by using the analytic Gaussian mechanism of 
(78), where σ = CalibrateAnalyticGaussianMechanism(ϵl, δl). For 
FL- DP method, we could calculate ϵl =

ϵT

2
√

2Tln(1∕δT )
 and δl =

δT

2T
.

Let f : Xn → ℝk be a function with global l2- norm sensitivity ∆. 

Suppose ϵ > 0 and 0 < δ <
1

2
− e

−
3ϵ

√

4πϵ . If the Gaussian mechanism 
A(D) = f(D) + Z with Z ∼ N(0,σ2𝕀k) is (ϵ, δ)- DP, then σ ≥

Δ
√

2ϵ
 . 

When σ =
Δ

√

2ϵ
 in analytic Gaussian DP mechanism, from theorem 1 

in the Supplementary Materials, the mechanism will be (ϵ, δ)- DP 

with δ = Φ(0) − eϵΦ( −
√

2ϵ) > 1

2
− e

−
3ϵ

√

4πϵ . Thus, it is impossible to 
achieve (ϵ, δ)- DP with δ = Φ(0) − eϵΦ(−

√

2ϵ) without increasing 
the variance of perturbation. We could use the above theorem to get 
the minimal noise to add for the given ϵl for each client at each epoch.

Hyperparameter selection in DP mechanism
Regarding the parameters in the DP mechanism, we selected the 
proper value C for l2- norm clipping based on statistically observing 
the distribution of all elements in gradients during the training phase 
for the centrally trained model, thus estimating the sensitivity of the 
training procedure of PPML- Omics. The selection of the privacy 

budget ϵ was a tricky task, as commonly adopted, such as in the 
handbook “Disclosure Avoidance for the 2020 Census: An Introduc-
tion” (59) and in (86), we tested ϵ from 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 
and measured the utility against different end- to- end ϵT in for all 
applications as a reference the potential users of PPML- Omics. To 
choose the proper value of δ, we performed the grid search from 0 to 
1/K, where K is the number of clients.

Hyperparameter and model selection in deep learning
To ensure that all models had a fair chance of learning a useful rep-
resentation in all tasks, we trained multiple instances of each model 
(FCN for Application 1, Auto- encoder for Application 2, and ST- 
Net for Application 3) using a grid search of hyperparameter set-
tings, including learning rate, epochs, number of hidden layers, 
number of filters, filter size, batch size, momentum, initial weight, 
weight decay, and keep probability. Then, we selected model in-
stances based on their training performance.

Model inversion attack for cancer classification models
ML model was abused to learn sensitive genomic information about 
individuals, which was shown in a case study of linear classifiers in per-
sonalized medicine by Fredrikson et al. (87). Thus, we implemented the 
MIA proposed by Fredrikson et al. (88) to extract sensitive information 
from the trained models with our PPML- Omics method under differ-
ent privacy budgets to address the privacy concerns. Regarding our 
tasks, we retreated the MIA as an optimization problem: to find the in-
put that maximizes the returned class confidence score (88), which was 
achieved by using gradient descent along with modifications specific to 
this domain as shown in Algorithm 3 (section S2.3).

We reconstructed the original gene expression with the MIA for 
each cancer for all pretrained models. For each cancer, we applied 
MIA to reconstruct the gene expression vector for the targeting can-
cer and selected genes with the highest reconstructed expression 
levels (≥0.8) as the most significant reconstructed gene features spe-
cific to each cancer. Then, we split all samples of 37 cancers into two 
groups (one only included the samples of the targeting cancer type 
and the other one included all remaining samples from other cancer 
types) and plotted the distribution of the z- score normalized expres-
sion of the previously selected genes of the real expression data in 
both groups (solid lines for samples of the target cancer type and 
dashed lines for other cancer types).

iDLG reconstruction attack
Sharing gradients during the training of ML networks could potentially 
leak private data. Zhao et al. (77) presented an approach named iDLG as 
shown in Algorithm 4, which showed the possibility to obtain private 
training data from the publicly shared gradients. In integrating tumor 
morphology and gene expression with spatial transcriptomics, we syn-
thesized the dummy data and corresponding labels with the supervision 
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of shared gradients and optimized the dummy data with iDLG to obtain 
one similar to the private training data.

Quantification of privacy leakage
For Application 1, to investigate the significance of the results of 
gene reconstruction attacks, we used the Kullback- Leibler diver-
gence, JS divergence, and KS test as shown below to characterize the 
degree of privacy leakage by calculating the divergence between two 
distributions of the expression level of the reconstructed genes in 
the target cancer type and other cancer types. Larger JS divergence 
values and smaller P values of the KS test indicated more significant 
differences between the expression levels of the reconstructed signa-
ture genes in the target cancer type and other cancer types, suggest-
ing a severe privacy leakage

where P(x) and Q(x) are two probability distributions.
For Application 2, given a method, if we cannot observe some 

targeted small clusters (sub- types) in the final clustering and the 
proportion results, then we could conclude that the method protects 
the patient’s privacy. In addition, if the clustering results for major 
cell types are correct, we could conclude that the method preserves 
a reasonable degree of usability while protecting privacy.

PPML- Omics avoids reconstruction attacks on medical images. 
Thus, we evaluated the privacy- preserving capability by visually 
comparing the reconstructed image and the raw image after the 
iDLG attack on different methods in Application 3.

Multi- party homomorphic encryption
To compare PPML- Omics (DP- based solution) with the solution in 
the cryptographic track, we implemented an FL method with MHE 
based on the CKKS cryptographic scheme (61) that provides ap-
proximate arithmetic over vectors of complex numbers in the train-
ing phase of the FL method with TenSEAL (89), which is a library 
for doing HE operations on tensors, built on top of Microsoft SEAL.

Supplementary Materials
This PDF file includes:
Sections S1 to S5
Figs. S1 to S11
tables S1 to S12
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