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Evaluating and mitigating bias in AI-based 
medical text generation
 

Xiuying Chen    1,2,4 , Tairan Wang2,4, Juexiao Zhou    2, Zirui Song1, Xin Gao    2  
& Xiangliang Zhang    2,3 

Artificial intelligence (AI) systems, particularly those based on deep  
learning models, have increasingly achieved expert-level performance 
in medical applications. However, there is growing concern that such 
AI systems may reflect and amplify human bias, reducing the quality of 
their performance in historically underserved populations. The fairness 
issue has attracted considerable research interest in the medical imaging 
classification field, yet it remains understudied in the text-generation 
domain. In this study, we investigate the fairness problem in text generation 
within the medical field and observe substantial performance discrepancies 
across different races, sexes and age groups, including intersectional 
groups, various model scales and different evaluation metrics. To mitigate 
this fairness issue, we propose an algorithm that selectively optimizes 
those underserved groups to reduce bias. Our evaluations across multiple 
backbones, datasets and modalities demonstrate that our proposed 
algorithm enhances fairness in text generation without compromising 
overall performance.

Artificial intelligence (AI) systems, particularly those based on deep 
learning models, have been widely adopted in healthcare, consistently 
demonstrating expert-level performance across various domains, 
presenting a clear incentive for real-world deployment due to the 
global medical expert shortage and to AI algorithms matching specia-
list performance1–6. However, the issue of fairness has arisen in medi-
cal image classification tasks, with biases observed in deep learning  
models related to race7–9, sex10,11 and age10. The bias also exists in 
models trained from different types of medical datum, such as chest 
X-rays8, CT scans12 and skin dermatology images13. For instance, chest 
X-ray classifiers trained to predict the presence of disease systemati-
cally underdiagnose black patients14, potentially leading to delays in 
care. A biased decision-making system is socially and ethically detri-
mental, especially in life-changing scenarios such as healthcare15,16.

This has motivated a growing body of work to understand bias and 
pursue fairness in image classification tasks17–20. For example, ref. 10  
proposed an algorithm that leverages the marginal pairwise equal 
opportunity to reduce bias in medical image classification. However, 
the fairness of text generation in medical contexts remains largely 

underexplored. This is particularly concerning given the rapid advance-
ments in text generation using large language models (LLMs)21–23. Valu-
able applications of text generation in healthcare include generating 
detailed radiology-report descriptions24 for more accurate diagnosis 
and distilling lengthy medical reports into concise summaries25 for 
quicker decision-making. It also aids in creating personalized patient 
education materials26 and automating clinical trial protocols27, enhanc-
ing patient engagement and research efficiency. As these applications 
become widely adopted23,28–32, it is crucial to consider the unfairness 
problem and bias. For example, as the real example in Supplementary 
Fig. 1 shows, if a summarization model misses an important cardio-
megaly observation from the doctor’s findings for a patient, this can 
lead to misdiagnosis or delayed treatment, potentially compromis-
ing patient care. This raises an important question: does unfairness 
exist in AI-generated medical text, and if so, how can it be mitigated? 
Investigating this problem presents a greater challenge than a typical 
classification task, as generation is harder to evaluate, and maintaining 
fairness in the generation process is more difficult than simply output-
ting classification labels.
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Results
Model overview
The pipeline of the proposed model is depicted in Fig. 1. The input 
images or text are passed into a neural network, which generates  
prediction results. The proposed method is versatile and not confined 
to specific deep learning models.

Generally speaking, vanilla generation models are trained by 
considering all cases in a batch, processing them sequentially using 
cross-entropy loss to predict words one by one. In this context, we 
denote the cases within a batch as Bi, where i represents the index 
number of the case.

In our approach, we introduce two paradigms for selecting cases 
for backpropagation, rather than using all cases. Our first selection 
criterion is simple and intuitive: we prioritize cases that exhibit a larger 
cross-entropy loss. Formally, this can be expressed as

B∗selected = Top γ{Bi ∈ B | ℒCE(Bi)}. (1)

Here, ℒCE(Bi)  denotes the cross-entropy loss of case Bi, and B∗selected  
represents the subset of cases selected for backpropagation on the 
basis of their higher loss values.

The cross-entropy criterion emphasizes word-level accuracy.  
However, given our focus on medical applications, we also want to 
underscore the significance of accurately detecting pathology obser-
vations. To address this, as depicted in Fig. 2, we modify the model to 
provide a prediction score not only for the ground-truth reference 
but also for a set of reference candidates. These candidates are gener-
ated by base models such as R2Gen, which are predefined and sorted 
according to their ROUGE and CheXpert scores, covering a range of 
quality levels.

The model then learns a ranking function that assigns higher 
prediction scores to candidates of higher quality. To achieve this, we 
employ a ranking loss that penalizes the model when it fails to rank 
high-quality candidates above lower-quality ones. The ranking loss is 
defined as follows:

ℒRanking =
n−1
∑
i=1
max (0,Δi − score(Ci) + score(Ci+1)) , (2)

where ℒRanking is the ranking loss, n is the number of candidates, Δi is 
the allowed margin between the scores of the ith candidate Ci and  
the (i + 1)th candidate Ci+1, and score(Ci) is the model’s prediction  
score for the ith candidate. The loss function encourages the model to 
learn that the score of the ith candidate should be at least Δi higher than 
the score of the (i + 1)th candidate. If the model’s predictions do not 
meet this criterion, the loss is non-zero and the model is penalized.

In essence, for cases where the candidates are not ranked correctly, 
it indicates that the input case is more challenging and the model does 
not fully comprehend the input. Therefore, by integrating the ranking 
loss with the generation loss, we select the cases for training as follows:

B∗selected = Top γ{Bi ∈ B | ℒCE(Bi) + ℒRanking(Bi)}. (3)

This combined approach ensures that the model is trained to not only 
generate accurate words but also maintain pathology accuracy, thereby 
improving the overall quality of the generated text.

Evaluation metrics
The evaluation of generated text quality is a complex and arduous 
topic, presenting greater challenges than the predominantly studied  
image classification task33–35. To reasonably compare performance 
across different groups, it is crucial to first determine how to evalu-
ate the quality of the generation. On the one hand, evaluation metrics  
based on n-gram overlap are the most commonly used and straight-
forward approach to assess text quality. Previous studies indicate that 

In this study, we first evaluate the presence of unfairness 
issues in image-based computer-aided diagnosis and text-based 
radiology-report and medical-paper summarization using publicly 
available datasets (Table 1). Our evaluation spans six generation 
evaluation metrics and three different scale models, and consid-
ers both individual and intersectional groups across dimensions 
such as race, sex and age. We also propose a metric-aware unfair-
ness indicator to evaluate the unfairness from different aspects. Our 
experimental result shows that the unfairness problem exists against 
certain groups. We also find that intersectional subgroups exhibit 
compounded biases in text generation, with patients who belong to 
two underserved subgroups receiving lower-quality diagnoses and 
experiencing larger discrepancies. To address the issue of unfairness, 
we propose a selection optimization framework. Our first selection 
criterion relies on the intuitive cross-entropy loss function, where 
cases with higher loss in underrepresented groups are given more 
emphasis during the training process. Apart from general quality 
considerations, we also want to consider domain-specific fairness 
enhancements. There are metrics specifically designed for evalu-
ating the accuracy of pathology concepts in medical text, and we 
prioritize training on cases that receive lower medical evaluation 
scores, thereby ensuring that the generated text precisely describes 
pathology terms. We demonstrate that our selective optimization can 
mitigate unfairness across various metrics, datasets and model scales 
for both individual and intersectional groups, without compromising 
the model’s overall performance. Our approach is not task specific 
or model specific, and can be applied to various areas of text genera-
tion, potentially effectively reducing bias issues. An illustration of our 
model is presented in Fig. 1.

Table 1 | Dataset characteristics

Subgroup Attribute Total Percentage

MIMIC dataset Age <65 yr 46,336 54.67%

≥65 yr 55,902 45.32%

Sex Male 50,273 49.17%

Female 51,965 50.82%

Race White 64,783 63.36%

Black 19,568 19.13%

Split Train 102,238 97.94%

Val. 800 0.76%

Test 1,341 1.29%

Task Input Output

Report generation Images Text

Report summarization Text Text

PubMed dataset Age Adolescent 6,749 42.29%

Young adult 2,077 13.01%

Middle aged 6,749 42.29%

Aged 4,887 30.62%

Species Humans 19,638 68.88%

Animals 6,906 24.22%

Split Train 71,062 84.26%

Val. 6,633 7.86%

Test 6,635 7.86%

Task
Input Output

Paper summarization Text Text

The characteristics of MIMIC-CXR and PubMed datasets for the tasks of radiology-report 
generation, report summarization and paper summarization.
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metrics within this category, such as ROUGE36, exhibit a high correlation 
with human evaluation results37. Other metrics such as BERTScore33, 
ACU38 and QuestEval39 also demonstrate performance comparable to 
that of ROUGE40. Therefore, in this paper, we choose ROUGE scores as 
one of the primary evaluation metrics. Another paradigm of metrics 
is designed for radiology domains. Here, we use CheXpert scores41, a 
common method in the radiology field42–44, to evaluate generated text. 
Researchers define 14 chest pathologies as labels and assess the quality 
of the generated text by checking how well it detects and classifies these 
labels. The results are compared with ground-truth labels. The labels 
include No Finding, Enlarged Cardiomediastinum, Cardiomegaly, Lung 
Opacity, Lung Lesion, Edema, Consolidation, Pneumonia, Atelectasis, 
Pneumothorax, Pleural Effusion, Pleural Other, Fracture and Support 
Devices. Compared with ROUGE scores, CheXpert focuses more on 
the terms describing results of chest pathologies, rather than taking 
into account word overlap without differentiating the general and 
domain-specific terms.

Since previous work has not investigated the unfairness problem 
in text generation, in this study we also introduce a metric-aware fair-
ness difference (MFD) to quantitatively measure unfairness. Inspired 
by the ‘pairwise fairness difference’ (PFD)10 in the classification domain, 
which subtracts the score of the lowest-performing group from the 
highest score within the subgroups, our MFD adapts this concept for 
text generation. MFD is metric aware, calculating a differential score 
between subgroups for each specific metric by subtracting the score 
of the lowest-performing group from the highest score within the sub-
groups. Compared with PFD, MFD can assess the degree of unfairness 
from various perspectives in the generated text. The formal calculation 
of MFD can be found in ‘Evaluation metrics’.

The justification for using MFD lies in its ability to capture  
unfairness across multiple dimensions relevant to text generation, 
which is inherently more complex than classification. In text genera-
tion, unfairness can manifest in subtle ways across various aspects of 
the generated output, such as stylistic inconsistencies or biases in 
content distribution. By providing a granular and metric-specific view 
of performance disparities, MFD facilitates a more comprehensive and 
targeted assessment of fairness in text-generation systems. A large 
MFD indicates disparities across subgroups, highlighting areas where 
fairness interventions are needed.

Compared models
Our study investigates three tasks: radiology-report generation, 
report summarization and paper summarization. For the first task, 
we selected the specialized model R2Gen45, which is tailored for report 
generation. For the second task, we used the pretrained language  
model BART-large46. For the last task, we utilized both BART-base46 and 
the LLM Llama-2-13B47. Our proposed paradigm is also applied to and 
compared with all the above models. In this way, the sizes of the models 
we investigated range from 100 million to 13 billion parameters, which 
provides a comprehensive investigation of fairness, and also allows  
us to thoroughly test our proposed method.

Datasets
We assessed the proposed and baseline models using the MIMIC-CXR48 
and PubMed49 datasets. MIMIC-CXR48 is a large public dataset of 377,110 
chest X-rays associated with 227,827 free-text radiology reports  
and summaries for patients presenting to the Beth Israel Deaconess  
Medical Center Emergency Department between 2011 and 2016.  

Overall 
population
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Radiology report
/Paper

Text-to-text 
model

Image-to-text 
model

Our proposed 
selective optimization

Radiology report

Report/paper
summary

Word overlap
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Fig. 1 | Model pipeline overview. Overview of the model pipeline consisting of radiology-report generation, report summarization and paper summarization.

r

Batch

Decoder

Input

Cross- 
entropy loss Ranking loss

Integrated 
loss

Integrated 
loss

Integrated 
loss

Imbalanced 
performance

Selection

P1>…>PN?

...

... ...

/

Reference Candidate1 CandidateN

Generation 
probability

... ...

Decoder(Encoder)

+

Fig. 2 | Details of the selection algorithm. Encoder–decoder or decoder-only model outputting generation probabilities for references and candidate sets. 
Ranking loss evaluating whether higher-quality candidates receive higher generation probabilities. Cases with high cross-entropy and ranking loss are selected for 
optimization.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00789-7

With the release of its fourth version50, the dataset now includes corre-
sponding patient information. The race and sex data are self-reported, 
and age is documented at the time of a patient’s first admission. We 
filtered out unpaired cases and accounted for instances where a single 
patient may have multiple X-rays and reports by randomly sampling 
one from each set. PubMed49 is a summarization dataset consisting 
of 133,215 full-text papers as documents and their abstracts as sum-
maries. We collected Medical Subject Headings (MeSH) labels using 
the PubMed API, resulting in 29,203 MeSH labels, and the evaluation is 
on the cases in test set with MeSH labels. Note that if a paper discusses 
both women and men, it is assigned to both categories.

Supplementary Fig. 2 provides an overview of the data selection 
process.

Text-generation bias in individual subpopulations on age, sex 
and race
As shown in Fig. 3, we find that the text-generation quality of  
base line models for all datasets differs in most of the considered 
subpopulations.

First, in Fig. 3a–c, we show the performance of different subgroups 
under ROUGE metrics across report generation, report summarization 
and paper summarization, respectively. For the first two tasks, it is 
observed that female, young and black patients receive higher-quality 
summaries than their male, aged and white counterparts. This indicates 

that the generated text exhibits a higher word-level overlap with the 
ground-truth reference. These findings are consistent across the  
two tasks. For the third task, the analysis includes more granular age 
comparisons as well as comparisons between humans and animals.  
In the detailed age analysis, we observe that older individuals  
generally tend to receive better-performing summaries. Additionally, 
significant differences are observed when comparing human data  
with animal data.

Next, in Fig. 3d,e, we present the CheXpert scores of different 
groups on the first two tasks, which are based on the radiology domain. 
It is observed that, in 15 out of 18 settings, female, aged and white indi-
viduals achieve higher scores. This indicates that these groups receive 
higher-quality generated results for medical conditions. Detailed 
performances are given in Supplementary Tables 1–7.

While the CheXpert score calculates the overlap of clinical obser-
vations between the generated summary and the reference summary, 
ROUGE scores consider all words. Therefore, when we observe that 
females consistently achieve higher CheXpert scores and ROUGE scores 
than males, we also notice a distinct pattern: the generated text for 
young and black groups tends to score higher according to ROUGE  
metrics, whereas aged and white individuals score higher CheXpert 
scores. This discrepancy indicates that different metrics highlight 
different biases in model performance, making the alleviation of  
unfairness a challenging task that requires a multifaceted approach.
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Fig. 3 | Performance disparities across demographics. a–e, Performance 
disparities across various categories, including sex (female versus male), 
race (black versus white), age (young versus aged) and species (humans 
versus animals), for ROUGE comparison in radiology-report generation (a), 
summarization on the CXR dataset (b) and summarization on the PubMed 

dataset (c), and for CheXpert comparison in radiology-report generation (d) 
and report summarization (e). The sample size is 6, and the data are presented 
as mean ± s.e.m. Error bars represent 95% confidence intervals. Significant 
differences, denoted by * (P < 0.05), ** (P < 0.01) and *** (P < 0.001), were 
identified using the two-sided Mann–Whitney U test.
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To offer a more intuitive understanding of the varying generation 
qualities, we present a representative example in Supplementary Fig. 1, 
with additional cases detailed in Supplementary Figs. 3 and 4. Despite 
similar inputs, males in these samples consistently received lower 
ROUGE and CheXpert scores, often resulting in missed or incorrect 
diagnoses. For instance, in the case depicted in Supplementary Fig. 1, 
both female and male cases involve cardiomegaly and edema. Yet, the 
predicted impression for females accurately includes these observa-
tions, whereas the male prediction fails to acknowledge the cardiopul-
monary condition. It is crucial to emphasize that the observed biases 
could result in misdiagnoses or underdiagnoses for certain groups, 
potentially exacerbating existing health disparities. For example, if an 
AI system is biased against men or minorities, it might fail to accurately 
diagnose conditions that are more prevalent or present differently in 
these groups, such as cardiovascular diseases in men or skin conditions 
in people with darker skin tones. Addressing biases is crucial to ensure 
that AI systems are equitable and provide fair, accurate assessments 
for all patients, regardless of age, sex or race.

Text-generation bias in intersectional groups
We next investigate intersectional groups, defined as patients belong-
ing to two subpopulations—for example, black female patients.  
We highlight the subpopulations with the largest fairness disparities  
in intersectional groups such as sex–race and sex–age in the first row  
of Fig. 4, with race–age comparisons shown in Supplementary Fig. 5.  
Out of the 16/18 metric comparisons, significant differences are 
revealed, indicating that intersectional subgroups frequently experi-
ence notable biases in text generation. To delve into the degree of bias, 
we compare the MFD between intersectional groups and subgroups 
in Supplementary Table 8. This comparison indicates that patients 
belonging to two underserved subgroups are more likely to receive 
lower-quality diagnoses and experience greater discrepancies between 
groups. For example, the disparity in CheXpert results between black 
males and white females is more pronounced than the disparities 
between black and white individuals or between females and males. 
Detailed scores from Fig. 4 are in Supplementary Table 9.

Why unfairness exists in radiology-report generation tasks
While the previous section focused on identifying biases across  
different groups, it is equally important to understand why such  
unfairness exists. By uncovering the underlying causes, we can  
better address these disparities and develop more equitable models.

First, we find that the ROUGE score is related to the target length. 
The Pearson correlation between the ROUGE score and the reference 
length is −0.21 with a P value of 3.90 × 10−16, indicating a mild correla-
tion where longer references tend to lead to lower ROUGE scores. This 
is intuitive because longer texts contain more information that needs 
to be generated, making the task more challenging.

Second, the CheXpert score is related to the original posi-
tive labels. If a group has more diseases classified as positive, its  
CheXpert score tends to be higher, with a correlation of 0.26 and a  
P value of 9.79 × 10−24. This indicates that the model tends to generate 
text mentioning pathologies rather than plain text without any dis-
ease mentions. Meanwhile, we observe that different demographic  
groups have varying probabilities of developing certain diseases. For 
example, black patients have a 7% higher likelihood of being diagnosed 
with pneumonia compared with white patients. Related works, such 
as ref. 51, indicate that hospitals often provide lower-quality care to  
black patients for pneumonia. This highlights the need to further 
explore disparities in disease prevalence and healthcare quality among 
different groups, which we leave for future work.

Finally, the number of training cases is also crucial. The correlation 
between different group case numbers and the ROUGE performance is 
0.26 with a P value of 0.02. This is also intuitive, as a larger number of 
training cases provides more data for the model to learn from, leading 
to better performance.

It is important to note that a group’s final performance is deter-
mined by multiple factors combined. Sometimes, one factor may 
outweigh the others. For example, target text length is a decisive factor 
for ROUGE performance. However, in some cases, multiple factors work 
together to yield the final comparative outcomes. For instance, aged 
individuals have fewer training cases compared with young indivi-
duals (45% compared with 54%), more observation labels (5.13 compared  
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The sample size is 6, and the data are presented as mean ± s.e.m. Error bars 
represent 95% confidence intervals. Significant differences, denoted by  
* (P < 0.05), ** (P < 0.01) and *** (P < 0.001), were identified using the two-sided 
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with 5.01) and longer texts (62.89 words compared with 60.23 words). 
The longer text factor and fewer training samples lead to worse ROUGE 
performance, but having more labels results in a higher CheXpert score. 
Due to the complexity of these distributions, achieving balance with 
a simple adjustment of one factor is challenging. To validate this, we 
performed an oversampling study, detailed in Supplementary Table 11, 
where we increased the number of male cases to match that of female 
cases. However, the performance imbalance persisted, indicating 
that addressing such disparities requires more nuanced approaches.

In summary, these factors contribute to an unstable and imbal-
anced performance across different groups, making the alleviation 
of these disparities a challenging task.

Discussion
When equipping the baseline models with our proposed selective opti-
mization, we find that our model is effective in reducing disparities 
across all datasets with respect to age, sex and race. In Fig. 5a,b, we 
present the MFD score for radiology-report generation and report 
summarization, respectively. Across almost all metrics and tasks, the 
MFD scores of our model are smaller than those of the baseline model, 
with the average MFD reduced by 35.27%. For the comparisons where 
the original discrepancy between groups is large, such as the female and 
male comparison, our model is particularly effective in alleviating bias. 
Moreover, although the discrepancies for different metrics vary—for 
example, black people have higher ROUGE scores but lower CheXpert 
scores compared with white people—our method is consistently useful 
for alleviating bias in these different metrics that measure different 

aspects. This suggests that, to improve fairness in other evaluation 
metrics, our framework can still be adopted. In Fig. 5c, we demonstrate 
that our method is also effective in alleviating bias not only between 
human groups but also across different species.

We also explore the effectiveness of our method for intersectional 
groups, as shown in Fig. 4. We highlight the subpopulations with the 
largest fairness disparities in intersectional groups such as sex–race 
and sex–age as shown in the three lower charts of the image, with 
race–age comparisons shown in Supplementary Fig. 5. As observed, 
there is no longer a significant difference between comparisons in most 
metrics. Our method even achieves superior performance, for example, 
on all three CheXpert metrics in the report-generation task. This sug-
gests that our method, by maintaining balance, can indeed enhance 
the treatment received by intersectional groups, ensuring that they 
benefit from improved outcomes. Details of Fig. 4 are in Supplemen-
tary Table 9. We also provide a discussion of the original performance 
comparison in Supplementary Section 1.1, and performance on the 
LLM backbone in Supplementary Section 1.3.

While our proposed method demonstrates significant improve-
ments in mitigating bias and enhancing fairness in medical text 
generation, several limitations remain. First, our approach relies on 
existing datasets, which may themselves contain inherent biases due to  
the demographic distributions or clinical practices present in the col-
lected data. As a result, our method may not fully address biases that 
are not represented or underrepresented in the training data. Further 
research is needed to explore more diverse and inclusive datasets that 
better reflect the variability in real-world populations. Second, the 
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Fig. 5 | Reduction of MFD. a–c, Reduction of MFD across pairwise comparisons, 
including female versus male, for radiology-report generation (a), report 
summarization (b) and scholarly-paper summarization (c). The sample size is 6, 

and the data are presented as mean ± s.e.m. Error bars represent 95% confidence 
intervals. Significant differences, denoted by * (P < 0.05), ** (P < 0.01) and  
*** (P < 0.001), were identified using the two-sided Mann–Whitney U test.
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effectiveness of the proposed selective optimization depends on the 
quality of the fairness metrics used. While metrics such as ROUGE and 
CheXpert are effective in measuring text similarity and medical accu-
racy, they may not fully capture subtle forms of bias, such as stylistic or 
semantic disparities across subpopulations. Incorporating additional 
evaluation methods or human-in-the-loop assessments could further 
enhance bias mitigation. Additionally, while our approach generalizes 
across multiple models and scales, its performance in real-time or 
resource-constrained environments remains unexplored. The com-
putational cost of selective optimization, especially when applied  
to LLMs, could pose challenges for deployment in clinical settings 
with limited resources. By addressing these limitations, our approach 
can be further refined to ensure more robust and equitable AI-driven 
solutions in medical text generation.

Methods
Evaluation metrics
We employ two types of evaluation metric. The first is a set of tradi-
tional text-generation metrics—ROUGE-1, ROUGE-2 and ROUGE-L, 
which respectively measure the matches of unigrams, bigrams and 
the longest common subsequence. These metrics directly reflect the 
similarity between the generated text and the ground-truth summary.

ROUGE-1 =
∑S∈References∑unigram∈SCountmatch (unigram)
∑S∈References∑unigram∈SCount (unigram)

, (4)

ROUGE-2 =
∑S∈References∑bigram∈SCountmatch (bigram)
∑S∈References∑bigram∈SCount (bigram)

, (5)

ROUGE-L = Fscore =
(1 + β2)RLCSPLCS
RLCS + β2PLCS

, (6)

where

RLCS =
LCS(X,Y )

lengthof reference , (7)

PLCS =
LCS(X,Y )

lengthof candidate . (8)

Additionally, we incorporate specially designed metrics, the CheXpert  
precision, recall and F1 scores41, which automatically detect the pres-
ence of 14 observations in radiology reports, capturing the uncertain-
ties inherent in radiograph interpretation. This metric has been shown 
to outperform at least two of three radiologists in detecting four clini-
cally relevant pathologies, demonstrating its capability in evaluating 
the accuracy of text.

From a fairness perspective, we introduce MFD, which computes 
the average absolute difference between two subgroups. Formally, 
MFD is defined as follows:

MFD = 1
n

n
∑
i=1

||Metricsubgroup1(i) −Metricsubgroup2(i)| (9)

Here, n represents the number of instances, and Metricsubgroup1(i) and 
Metricsubgroup2(i) denote the metric values for the ith instance in sub-
group 1 and subgroup 2, respectively. Being metric aware, MFD is 
adept at capturing the actual disparities among various groups on the 
basis of the inherent attributes of the metric itself, such as word-level 
accuracy or symptom detection accuracy. This allows for a nuanced 
understanding of fairness in the context of the specific task at hand.

The Mann–Whitney U test is a non-parametric statistical test 
used to determine whether there is a significant difference between 
two independent groups. A smaller P value indicates a significant 

difference, and better performance is determined by comparing the 
metric values of interest between the groups.

Experimental settings
We conducted our experiments using Hugging Face52 on NVIDIA A100 
graphics processing units. For the R2Gen45 model, we employed a 
ResNet53 pretrained on ImageNet54 as the visual extractor to extract 
patch features, with each feature having a dimension of 2,048. For the 
relational memory, we set the dimension to 512, the number of heads 
in multihead attention to 8 and the number of memory slots to 3 by 
default. The model was trained using cross-entropy loss with the Adam 
optimizer55. We set the learning rate to 5 × 10−5 for the visual extractor 
and 1 × 10−4 for other parameters. We decayed this rate by a factor of 
0.8 per epoch for each dataset and set the beam size to 3 to balance 
generation effectiveness and efficiency.

For the BART models (facebook/bart-base and facebook/
bart-large)46, we adhered to their hyperparameter settings as they 
yielded better performance. We used the Adam optimizer with ϵ set to 
1 × 10−8 and β set to (0.9, 0.999). The learning rate was set to 3 × 10−5, with 
a warm-up of 500 steps. The batch size was set to 8, with four gradient 
accumulation steps.

For fine-tuning the LLM Llama-2-13B, we used low-rank adapta-
tion, which reduced the number of trainable parameters by learning  
pairs of rank-decomposition matrices while freezing the original 
weights. Specifically, we applied low-rank adaptation to the query 
projection layer and the value projection layer to enhance the model’s 
adaptability without altering its structure. Additionally, we set the 
per-device training batch size to 16, utilized gradient accumulation 
with a step count of 1 to simulate larger batch sizes, and employed a 
cosine learning rate scheduler to optimize the learning rate adaptively 
throughout the training process.

We also include an ablation study in Supplementary Table 11, where 
we remove the cross-entropy-based selection and the ranking-loss- 
based selection, respectively. The results demonstrate the effective-
ness of both components in alleviating bias. All experiments in this 
paper were repeated at least five times, following ref. 10. The aver-
age performance with 95% confidence intervals is reported for each 
evaluation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MIMIC-CXR dataset used in this study is available in the Physio-
Net database48 https://www.physionet.org/content/mimic-cxr-jpg/, 
which consists of de-identified chest X-ray images collected from the  
Beth Israel Deaconess Medical Center. The PubMed dataset is available 
at https://huggingface.co/datasets/ccdv/pubmed-summarization.  
It is a summarization and document pair dataset derived from  
PubMed, containing biomedical research abstracts and their corres-
ponding summaries. All source datasets are public datasets that can be 
accessed on the basis of the links in this paper. Source data for Figs. 3–5 
are available with this manuscript56 under a Creative Commons license 
CC BY 4.0. Figures 1 and 2 do not contain associated data.

Code availability
The code supporting this study is publicly available57 under a Creative 
Commons license CC BY 4.0. For development and version control, 
the source code is also hosted on GitHub: https://github.com/iriscxy/
GenFair.
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