
Articles
https://doi.org/10.1038/s42256-022-00483-7

1Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. 2Computer, Electrical 
and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. 3Department 
of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China. 4Heilongjiang Tuomeng Technology Company, Harbin, 
China. 5Department of Computer Tomography, The First Affiliated Hospital of Harbin Medical University, Harbin, China. 6Department of Radiology, The 
Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China. 7Institute of Information and Computer Engineering, NorthEast Forestry 
University, Harbin, China. 8BioMap, Beijing, China. 9These authors contributed equally: Longxi Zhou, Xianglin Meng, Yuxin Huang, Kai Kang.  
✉e-mail: ghwang@nefu.edu.cn; larry.carin@kaust.edu.sa; xxgct_417@126.com; drkaijiang@163.com; qiuzw@nefu.edu.cn; xin.gao@kaust.edu.sa

COVID-19 often causes pulmonary parenchyma lesions 
months after discharge, such as ground glass opacities, con-
solidations and long-term fibrosis1,2. Past studies quanti-

fied lesions in CT scans of COVID-19 inpatients and found that 
computerized tomography (CT) lesions are predictive indicators 
for COVID-19 inpatients’ symptoms and short-term prognosis3,4. 
However, among COVID-19 survivors discharged from hospitals, 
both a recent study1 and our survivor cohort show inconsisten-
cies between survivor respiratory sequelae and their follow-up CT 
scans. First, survivors who had severe symptoms patients in gen-
eral have much worse six-months follow-up lung function than 
the mild-symptom patients, whereas their six-month follow-up 
CT scans are very similar from almost all aspects1. Second, a large 
portion of COVID-19 survivors have respiratory sequelae six 
months after discharge. However, experienced radiologists and 
state-of-the-art (SOTA) artificial intelligence (AI) systems fail to 
detect any CT lesion on around half of the survivors, and can only 
detect negligible lesions (average volume < 5 cm3) on the remaining 
patients1. Such an inconsistency raises a key question towards under-
standing the prognosis and rehabilitation of COVID-19 patients, 
which is one the most critical questions at the post-pandemic  

era: are these respiratory sequelae caused by pulmonary lesions 
that are visually indiscernible on chest CT under the lung window, 
or are they caused by other reasons such as neurological impair-
ments5 and muscle weakness1, whereas the patients’ lungs are  
mostly recovered?

Artificial intelligence has shown the potential to solve the afore-
mentioned question, as it has capabilities in mining subvisual 
image features6–8. To this end, existing methods train classifiers to 
distinguish the labelled classes (for example, CT scans from fully 
recovered survivors versus from survivors with sequelae), and then 
extract image features that contribute to the classification perfor-
mance, such as indiscernible low-level textures, image intensity dis-
tributions, grey-level co-occurrence matrix, or local image patterns 
that correspond to filters in convolutional neural networks (CNNs). 
However, such subvisual features extracted by existing approaches 
have poor medical interpretability and are prone to false discoveries 
due to data bias9. These limitations consequently lead to difficulties 
in gaining pathological insights, understanding mechanisms, devel-
oping better treatment and driving scientific discoveries, which, 
unfortunately, are some of the most common criticisms of AI-based 
computer-aided detection methods.
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Tremendous efforts have been made to improve diagnosis and treatment of COVID-19, but knowledge on long-term complica-
tions is limited. In particular, a large portion of survivors has respiratory complications, but currently, experienced radiolo-
gists and state-of-the-art artificial intelligence systems are not able to detect many abnormalities from follow-up computerized 
tomography (CT) scans of COVID-19 survivors. Here we propose Deep-LungParenchyma-Enhancing (DLPE), a computer-aided 
detection (CAD) method for detecting and quantifying pulmonary parenchyma lesions on chest CT. Through proposing a num-
ber of deep-learning-based segmentation models and assembling them in an interpretable manner, DLPE removes irrelevant 
tissues from the perspective of pulmonary parenchyma, and calculates the scan-level optimal window, which considerably 
enhances parenchyma lesions relative to the lung window. Aided by DLPE, radiologists discovered novel and interpretable 
lesions from COVID-19 inpatients and survivors, which were previously invisible under the lung window. Based on DLPE, we 
removed the scan-level bias of CT scans, and then extracted precise radiomics from such novel lesions. We further demon-
strated that these radiomics have strong predictive power for key COVID-19 clinical metrics on an inpatient cohort of 1,193 CT 
scans and for sequelae on a survivor cohort of 219 CT scans. Our work sheds light on the development of interpretable medical 
artificial intelligence and showcases how artificial intelligence can discover medical findings that are beyond sight.
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To extract interpretable and predictive subvisual features from 
CT scans of COVID-19 inpatients and survivors, we propose the 
Deep-LungParenchyma-Enhancing (DLPE) method, which fol-
lows a different logic: instead of forcing AI models to extract fea-
tures that have the best discriminative power on a given dataset, 
DLPE tries to help radiologists see the unseen by enhancing the 
previously visually indiscernible features to a discernible level. 
Radiologists can thus analyse the morphologies and the origins 
of previously invisible lesions, and can then provide good annota-
tions for such lesions, which become the ground truth for further 
training automatic segmentation and quantification models. To 
this end, we first develop novel, accurate segmentation models for 
DLPE to exclude irrelevant tissues (such as airways and blood ves-
sels) from the lung CT. We then calculate the scan-specific opti-
mal window for observing pulmonary parenchyma, which removes 
patient–patient variation and system-specific bias, and substan-
tially enhances parenchyma abnormalities compared with the lung 
window. With the enhanced images, radiologists can examine the 
detailed morphology for subvisual lesions and provide annotations. 
Deep-LungParenchyma-Enhancing then customizes our previ-
ously proposed SOTA deep learning model10 to quantify interpre-
table radiomics for subvisual lesions, such as the lesion volume 
and the lesion severity. Finally, we study the predictive power of 
these DLPE-detected features on quantifying clinical metrics and 
sequelae of COVID-19 patients, based on which we further infer the 
pathological insights of these novel lesions.

Figure 1a shows the DLPE workflow, which consists of three 
steps: first, automatic segmentations of lungs, airways and blood ves-
sels from CT scans. The segmentation models are trained over the 
dataset containing 3,644 CT scans collected from patients from five 
different hospitals. The backbone of our segmentation model is cus-
tomized over our previously proposed SOTA 2.5D-based segmenta-
tion model10, which combines the three-dimensional information of 
multiview two-dimensional models and thus achieves an effective 
tradeoff between the segmentation accuracy and model complexity. 
Based on the characteristics of airways and blood vessels, we further 
develop the feature-enhanced loss and the two stage-segmentation 
protocol, which achieve fast, robust and human-level segmentation, 
and make the segmentation of airways and blood vessels at different 
branching levels possible (see Methods). Second, removal of tissues 
other than pulmonary parenchyma and parenchyma enhance-
ment. Tissues such as bronchiole, mediastinum and lymph glands 
are negligible in volume, thus inside lungs we only need to remove 
airways and blood vessels. Parenchyma enhancement needs an 
accurate estimation of the baseline CT value as well as the deviation 
of CT values for healthy parenchyma, as parenchyma voxels with 
outlier CT values imply abnormality. To this end, we first remove 
the known lesions using our previously proposed COVID-19 lesion 
segmentation model10, and then calculate the scan-level baseline CT 
and the deviation for healthy parenchyma (here, healthy means that 
the parenchyma has no known lesion). With these scan-specific sta-
tistics, we can then considerably enhance the parenchyma lesions 
compared with the lung window (see Methods), which thus makes 
the previous visually indiscernible lesions visible. Third, discovery 
and quantification of novel subvisual lesions. During the discov-
ery of the subvisual lesions, radiologists in this study compare the 
parenchyma-enhanced images from COVID-19 survivors with the 
normal CT scans of the healthy people (as control), and mark the 
regions that look different from healthy people. With these ground 
truths, we develop a segmentation model to gain pixel-level segmen-
tations for the subvisual lesions, which is trained and tested over the 
dataset containing 1,412 COVID-19 chest CT scans (1,193 inpa-
tient scans and 219 survivor scans) from five hospitals. Based on the 
segmentation, DLPE quantifies several interpretable radiomics by 
incorporating the knowledge of radiologists, which are then evalu-
ated in terms of their predictive power for key COVID-19 clinical 

metrics and sequelae. More details for the three steps are described 
in the Methods.

Results
Segmentation of airways and pulmonary blood vessels. The 
power of DLPE not only relies on the scheme-level novelty, but 
also benefits from two technical issues solved within DLPE, that 
is, the segmentation for airways and for pulmonary blood vessels. 
Very recent studies on these two issues tried to detect more detailed 
structures and aimed at more robust segmentations11,12. However, 
the existing methods do not work well on our COVID-19 inpatient 
cohort, which contains many severe and critical cases. To accurately 
and robustly segment airways and blood vessels for COVID-19 
inpatients, we proposed feature-enhanced loss and a two-stage seg-
mentation protocol. The former can efficiently extract features from 
tissues with self-similarity, whereas the latter is designed to solve 
this large-scene-small-object problem. These technical novelties 
achieved SOTA performance for the segmentation of airways and 
pulmonary blood vessels for COVID-19 patients. Figure 2a shows a 
representative CT scan from a critically ill COVID-19 patient—for 
which the segmentation task is very challenging due to the strong 
lesion signals—and the segmentation results of DLPE and SOTA 
methods. Interestingly, although the segmentation model in DLPE 
was not specifically designed and trained for the two tasks sepa-
rately, it considerably outperformed both recent SOTA methods 
on airway (average dice score of 0.75 versus 0.32) and blood vessel 
segmentation (average dice score of 0.88 versus 0.39) for critically 
ill COVID-19 inpatients, which demonstrates its robustness and 
generalization power.

When segmenting airways and blood vessels for CT scans 
with clear parenchyma, DLPE also achieved a SOTA dice score, 
especially for tiny structures. Figure 2b (left) shows the aver-
age dice score when segmenting CT scans from healthy people. 
Deep-LungParenchyma-Enhancing detected substantially more 
tiny structures for airways and blood vessels than recent SOTA 
methods. Figure 2b (right) shows representative segmentation 
results of DLPE for blood vessels and airways.

Quantification of subvisual lesions. We used DLPE to analyse 
our COVID-19 survivor follow-up dataset (including 69 survivors 
three or six months after discharge) and found substantial subvisual 
lesions: without DLPE, radiologists only found 3.5 cm3 of lesions on 
average for each survivor, whereas after being enhanced by DLPE, 
they found 109 cm3 of abnormalities on average. Figure 3a shows one 
example CT section of a survivor with severe respiratory sequelae 
(most metrics for lung functions are substantially lower than the 
reference value). However, the follow-up CT scan has nearly no 
visible lesion under the original lung window (Fig. 3a top panels). 
After being processed and enhanced by DLPE, there are easily visible 
lesions shown in the same CT section (Fig. 3a bottom panel).

We believe that the follow-up subvisual lesions reflect mild pul-
monary fibrosis. These subvisual lesions have strong correlations 
with sequelae related to fibrosis: more subvisual lesions means lower 
lung capacity, less alveolar-capillary gas conductance and a worse St 
George’s Respiratory Questionnaire (SGRQ) score (Extended Data 
Fig. 1), which are all typical consequences of pulmonary fibrosis13. 
Furthermore, pulmonary fibrosis provides good explanations for 
the morphologies and formations of the follow-up subvisual lesions. 
Similar to recent studies14,15, we observed pulmonary fibrosis under 
the lung window in our cohort. However, these fibroses (visible 
under the original lung window) are actually enclosed by much 
more subvisual lesions (invisible without DLPE). Considering that 
fibrosis is caused by the accumulation of fibroblasts and collagen16, 
it is likely that only the most severe accumulation can be seen in 
the lung window, while DLPE can unveil mild accumulation and 
provide much more information.
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In our cohort, the most prevalent sequela is the abnormal 
SGRQ score (see Supplementary Table 12 for the prevalence of 
the sequelae). St George’s Respiratory Questionnaire score is the 

most frequently used and the most comprehensive17 quantity of life 
assessment for respiratory sequelae; it has 50 items with 76 weighted 
responses and its score ranges from 0 to 100. A higher score  
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Fig. 1 | Workflow of the DLPE method and experimental design of the entire study. a, The workflow of the DLPE method. Step 1, segmentations of 
airways, blood-vessel and lung masks. Step 2, removal of irrelevant tissues (that is, airway, blood vessels and known lesion regions) and the sampling of 
the parenchyma to calculate the baseline CT value and the standard deviation of healthy parenchyma, which are then used to enhance the parenchyma 
dozens of times compared with the lung window. Step 3, radiologists provide annotations for abnormal regions from the enhanced CT, which is used 
as the ground truth for DLPE to train automatic pixel-level segmentation and quantification models for the subvisual lesions. Credit: Ivan Gromicho, 
King Abdullah University of Science and Technology (KAUST). b, We applied DLPE to two datasets: the COVID-19 inpatient dataset and the COVID-
19 long-term follow-up dataset. Radiologists found novel subvisual lesions on both datasets, and gave pathological explanations for the lesion origins: 
follow-up subvisual lesions reflect mild pulmonary fibrosis, while inpatient subvisual lesions reflect mild plasma fluid leakages. These explanations guide 
and authenticate our findings. CAD: computer-aided detection.
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corresponds with a lower quality of life and the score should be less 
than 1 for healthy people. On the follow-up cohort, 46 survivors 
completed the SGRQ questionnaire, and among them 43 survivors 
self-reported respiratory sequelae that impacted their life quality, 
with an average SGRQ score of 18.6.

Radiomics quantified by DLPE predict the SGRQ score with 
high accuracy, and the subvisual lesions provide nearly all the domi-
nant features in the prediction. Deep-LungParenchyma-Enhancing 
quantified six interpretable radiomics (see Methods) and we used 
XGBoost to predict the SGRQ score based on these features. 
As shown in Fig. 3b, the Pearson correlation coefficient (PCC) 
between the predicted and the ground-truth SGRQ score is 0.723 
(P < 0.0001), and DLPE radiomics explain 52.3% of the variance 
of the SGRQ score. To our knowledge, only few methods reported 
their performance for SGRQ prediction, but the SOTA model for 
predicting chronic obstructive pulmonary disease assessment test 
(a good surrogate for SGRQ17) only explained <50% of its vari-
ance with their features18. As shown in Fig. 3c, if the six radiomics 
are calculated by visible lesions only, the PCC is 0.243 (P = 0.130), 
which means that DLPE plays a critical role in extracting subvisual 
radiomics that are essential for COVID-19 follow-up CT analysis. 
We found that two radiomics of DLPE detected lesions are crucial  

for predicting the SGRQ score: the median signal difference 
between lesions and baseline (R1, or the median lesion severity), 
and the ratio between the lesion volume and the lung volume (R2). 
The mean absolute error (MAE) will significantly increase if either 
R1 (P < 0.001) or R2 (P < 0.0001) is removed from the predictive 
model. In addition, when predicting most of the other follow-up 
sequelae, DLPE radiomics consistently have one of the best dis-
criminative powers among all features (Extended Data Fig. 1). 
Altogether, these results strongly suggest that the subvisual lesions 
identified by DLPE are not artefacts, but true characteristics of 
long-term sequelae of COVID-19, whose radiomics can be effective 
indicators for quantitative analysis of COVID-19 sequelae.

To evaluate the generalization power of DLPE on other tasks, 
we further trained and tested DLPE on the COVID-19 inpatient 
cohort, which contains 1,193 CT scans. On the inpatient CT dataset, 
DLPE found novel subvisual lesions (Fig. 3d) that resemble fainter 
ground-glass opacities, which may reflect mild plasma fluid leak-
ages due to disruption of the epithelium of alveolar19. Plasma fluid 
leakages usually decrease the PaO2/FiO2 ratio (PFR)19, which is the 
definitive metric when classifying COVID-19 inpatients20,21. We 
used clinical metrics and radiomics to predict PFR (see Methods), 
and Fig. 3f shows that subvisual lesions provide important  

Segmentation performances for airways and blood vessels 

Methods Airway BV Airway* BV* 

DLPE 0.870 0.911 0.782 0.847 

MPUnet (23)
 

0.801 0.844 0.339 0.668 

3D U-net 0.784 0.866 0.135 0.554 

Zheng’s (11)
 

0.880 None 0.693 None 

Nam’s (12) None 0.895 None 0.616 

(i) lung window CT

Lung window CT (v) Blood vessels, ground truth (vi) Blood vessels, DLPE (vii) Blood vessels, Nam’s

(ii) Airways, ground truth (iii) Airways, DLPE (iv) Airways, Zheng’s

Dice = 0.32Dice = 0.75

Dice = 0.39Dice = 0.88

b

a

Blood vessels Airways

Fig. 2 | DLPE achieved SOTA segmentation for airways and pulmonary blood vessels for severely/critically ill COVID-19 inpatients and healthy people. 
a, Performance comparisons for the airway and pulmonary blood vessel segmentations on severely/critically ill COVID-19 inpatient scans. The test set 
contains 50 CT scans from severely/critically ill COVID-19 inpatients. The first row shows airway segmentation, whereas the second row shows blood 
vessel segmentation. ai, The chest CT scan in the lung window. aii, Ground-truth annotation for airways (in blue). aiii, Our segmentation model achieved 
an average dice score of 0.75 on the test set. aiv, Zheng and colleagues’ model11 achieved an average dice score of 0.32. av, Ground-truth annotation 
for blood vessels (in red). avi, Our segmentation model achieved an average dice score of 0.88 on the test set. avii, Nam, J. G. and colleagues’ model12 
achieved an average dice score of 0.39. b, Segmentation performance for airways and pulmonary blood vessels on CT scans from healthy people. Left: 
performance is shown in a scan-level average dice score on the test set of 189 CT scans from healthy people, where BV refers to pulmonary blood vessels 
and asterisks indicate segmentation for tiny structures (branching level > 5, see Methods for a detailed definition). The best performer is in bold. Right: 
respresentative segmentation results of DLPE on the test set.
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Ablation study when predicting SGRQ score 

Feature PCC MAE RMSE 

DLPE 0.723 5.83 7.33 

Visible 0.243 11.97 15.80 

–R1 0.498 7.17 9.21 
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Feature PCC MAE RMSE 

DLPE 0.853 29.20 35.48 

Visible 0.760 36.80 44.84 

–CT lesion 0.618 44.85 57.73 

–LDH 0.663 42.73 52.48 

–CRP 0.692 39.88 49.64 
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Fig. 3 | Subvisual lesions discovered by DLPE, and their relationship with sequelae and clinical metrics. a, One section of the chest CT scan from a 
COVID-19 survivor with an SGRQ score of 27 (that is, probably severe chronic obstructive pulmonary disease in clinical diagnosis). Upper left, a CT scan 
under the original lung window; lower left, its DLPE-enhanced counterpart; upper and lower right, the corresponding segmentation of lesions from the CT 
image in the upper and lower left, respectively. Red parts are the detected lesions, from which it can be seen that the CT under the original lung window 
only contains negligible lesions, whereas there are substantial lesions after being enhanced by DLPE. b, A scatter plot showing the predicted SGRQ score 
by using radiomics quantified by DLPE versus the true SGRQ score. c, The ablation study showing the prediction performance when only using visible 
radiomics, using radiomics extracted by DLPE but without using R1 (the median signal difference between lesions and baseline), and without using R2 (the 
ratio between the lesion volume and the lung volume) to predict the SGRQ score. RMSE, root-mean-square error. The best performer is in bold. d, Same as 
a, but for one section of the chest CT scan from a COVID-19 inpatient with a PFR of 274. e, The scatter plot showing the predicted PFR by using radiomics 
quantified by DLPE versus the true PFR. f, The ablation study showing the prediction performance when only using visible radiomics, using radiomics 
extracted by DLPE but without using CT lesions, without using LDH, and without using CRP to predict PFR. The best performer is in bold.
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information for predicting PFR: if we quantify radiomics only 
with lesions visible under the lung window, the PCC between the 
predicted and ground-truth PFR decreases from 0.853 (Fig. 3e) to 

0.760, and the mean absolute error (MAE) increases significantly, 
from 29.2 to 36.8 (P = 0.0040). Using DLPE, the MAE is only 29.2, 
which is an outstanding performance; by comparison, the MAE 

Segmentation performances for sub visual lesions 

Methods Original CT DLPE enhanced 

2.5D Model (10) 0.612 ± 0.165 0.886 ± 0.117 

2D U-net 0.588 ± 0.181 0.819 ± 0.144 
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Fig. 4 | The DLPE scheme is crucial for the quantification of subvisual lesions. a, Segmentation performances for subvisual lesions without and with the 
DLPE scheme. Performance is shown in scan-level average dice score ± s.d. of the fivefold cross-validation on the follow-up cohort of 69 survivors. In the 
second column, models were inputted with the original CT, while in the third column models were inputted with the DLPE-enhanced CT. All models were 
pre-trained on the 1,193 COVID-19 inpatient CT scans. The best performers are in bold. b, Comparisons between the median lesion severity (the radiomic 
feature R1) with scan-level bias for baseline (a scan-level bias removed by DLPE) on the follow-up cohort. Each data point on the left shows R1 of a scan, 
whereas each data point on the right shows the baseline CT value of a scan subtracting the average baseline CT values of all scans. On the follow-up 
cohort, the variation of the baseline (noise) is 22.28 times larger than that of the R1 radiomic. This implies that without DLPE, many features for subvisual 
lesions may be concealed by the scan-level bias. c, Visualizations for models in a, second column. The segmentations for subvisual lesions are in red, 
and the dice scores indicate the performance of the models for this scan. d, Visualizations for models in a, third column. The segmentations for subvisual 
lesions are in red, and the dice scores indicate the performance of the models for this scan.
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between the SOTA minimally invasive PFR measurement and the 
invasive PFR ground truth is 26.4 (ref. 22). Our results also found 
that the lactate dehydrogenase (LDH) and C-reactive protein (CRP) 
greatly decrease the MAE during PFR prediction (P < 0.0001)  
(Fig. 3f), which conforms with previous studies20,21.

Ablation studies. The DLPE enhancement removes scan-level bias 
(see equation (9)) and thus enables precise quantification of sub-
visual lesions. Figure 4b compares the median lesion severity (R1, 
an important radiomic) with the baseline CT signal (a scan-level 
bias, removed by DLPE) on the follow-up cohort. Without DLPE 
enhancement, R1 (the left distribution of Fig. 4b) is dominated by 
the scan-level bias of the baseline (the right distribution of Fig. 4b). 
On the follow-up cohort, the variation of the baseline CT signal is 
22.28-times greater than that of median lesion severity, which justi-
fies the necessity of removing the scan-level bias.

We further carried out ablation studies to show how scan-level 
bias can hamper the quantification of subvisual lesions. Even 
with the ground-truth annotation of subvisual lesions, the DLPE 
enhancement is still crucial for their segmentation: we compared 
the main segmentation model used in DLPE, that is, the 2.5D 
model10, with other SOTA models such as MPU-net23 and 3D 
U-net, and found that their performance difference is much smaller 
than the one caused by whether or not to use the DLPE enhance-
ment to remove scan-level bias. Specifically, after DLPE enhance-
ment, almost all existing segmentation models can segment the 
subvisual lesions (Fig. 4a, third column, best average dice score 
of 0.886), whereas without the DLPE enhancement, the best aver-
age dice score for all segmentation models is only 0.612 (Fig. 4a, 
second column). Figure 4c,d visualize the segmentation results for 
subvisual lesions without and with DLPE scheme: all models were 
trained with the same ground-truth annotations, but only mod-
els that were inputted with DLPE-enhanced CT scan can accu-
rately segment subvisual lesions. Furthermore, without the DLPE 
enhancement to remove scan-level bias and noise for the radiomics, 
the PCCs of predicting several key respiratory sequelae significantly 
decreases (Extended Data Fig. 1). This means when radiomics are 
quantified without DLPE enhancement, their explanatory power  
significantly decreased.

Conclusion
The DLPE method combines the strengths of medical experts and 
AI through a human-in-the-loop training scheme to extract fully 
interpretable subvisual CT features for pulmonary parenchyma. 
Deep-LungParenchyma-Enhancing can help radiologists discover, 
annotate and quantify novel parenchyma lesions under many sce-
narios, by customizing the known lesion segmentation model in the 
second step of DLPE workflow for different tasks (Fig. 1). For exam-
ple, we applied the DLPE scheme to the segmentation task of seven 
different lung diseases, including different pneumonia, tuberculosis, 
pulmonary nodules and lung cancers. As shown in Extended Data 
Fig. 2, DLPE can make robust enhancement and critical segmenta-
tion for various lung diseases, which demonstrates its generalization 
power and potential clinical usefulness.

In this work we applied DLPE on COVID-19 inpatient and 
follow-up datasets, and discovered interpretable subvisual lesions. 
The pathological explanations of these novel COVID-19 lesions 
mutually authenticate with analyses between radiomics and key 
clinical metrics. On our follow-up cohort, 97% of lesions are sub-
visual, which is one of the most important culprits of COVID-19 
respiratory sequelae. More studies and more follow-up cases are 
needed to unveil the origin, relationship and treatment for these 
long-term CT lesions.

Methods
Dataset description

Training dataset for the DLPE method. We trained and cross-validated the DLPE 
method on a training dataset with 3,644 CT scans, for lung segmentation, airway 
segmentation, blood vessel segmentation, heart segmentation and parenchyma 
baseline CT value estimation. These data were collected from five hospitals and 
provided by Heilongjiang Tuomeng Technology Company. The slice thickness 
ranges from 1.0 mm to 5.0 mm. All of these CT scans are not acquired from 
COVID-19 inpatients or survivors.

COVID-19 cohort analysed by the DLPE method. We applied the DLPE 
method to COVID-19 survivors and inpatients. The survivor cohort contains 69 
participants who were under the severe or critical condition during their inpatient 
period (that is, they were placed in intensive care unit). All involved survivors gave 
informed consent before their participation in the study. For each participant, we 
recorded the inpatient clinical metrics, inpatient CT scans, follow-up CT scans, 
follow-up lung functions and follow-up laboratory tests. These survivors provided 
219 CT scans collected by one of the two commercial CT scanners: Philips iCT 256 
and UIH uCT 528. The slice thicknesses range from 1.0 mm to 2.5 mm. Inpatient 
metics and follow-up laboratory tests are listed in Supplementary Section 2.3.9. 
Follow-up lung functions are listed in Supplementary Table 7. The inpatient 
cohort contains 1,193 COVID-19 inpatient CT scans (from 633 patients) from five 
hospitals. The slice thickness ranges from 1.0 mm to 2.5 mm. These patients were 
infected during January, 2020 and August, 2020 in Heilongjiang, China.

Data inclusion/exclusion criteria during analysis. For the training of the DLPE 
method, a small number of CT scans (148 CT scans) were collected after the 
injection of the contrast agents. However, as our DLPE method does not require a 
contrast-agent-injected CT to estimate the pulmonary parenchyma, we excluded 
these 148 CT scans during training. We instead used these 148 CT scans with 
contrast agents as an independent validation set to evaluate the generalization 
power of the DLPE method (see Supplementary Section 1.1.4).

For inpatient data of the COVID-19 cohort, we analysed the relationship 
between CT features and PFR. Not all inpatient CT scans have the corresponding 
PFR, we therefore excluded these CT scans. Finally, we have 63 inpatient CT scans 
with the corresponding PFR.

For follow-up data of the COVID-19 cohort, some survivors missed certain 
metrics. We discarded a sample if the number of missing metrics exceed 30% of the 
total metrics (excluded 6 out of 69).

More detailed inclusion and exclusion criteria are in Supplementary Sections 
2.1 and 2.2.

DLPE method. DLPE is an interpretable and powerful method, which 
removes irrelevant tissues from the perspective of pulmonary parenchyma 
and intensifies the parenchyma lesions considerably compared to the lung 
window. Deep-LungParenchyma-Enhancing can thus help radiologists discover 
and quantify interpretable subvisual lesions. This ability is based on precise 
three-dimensional segmentations of airways, blood vessels, lungs and known 
COVID-19 lesions, as these segmentations provide landmarks when DLPE samples 
healthy parenchyma, and reduces noise during lesion quantification.

DLPE develops and integrates many SOTA methods, and uses multiple datasets. 
Here we describe key components for DLPE methods: (1) CT data normalization, (2) 
segmentation models, (3) parenchyma enhancement and (4) quantification of lesions.

CT data normalization. Chest CT data from different scanners have different pixel 
spacing, slice thickness and optimal lung windows. We therefore apply spatial and 
signal normalizations (Supplementary Section 1.1) to cast the data into a same, 
standard space, which has proven to be able to greatly improve both the robustness 
and accuracy in our previous research10. During the spatial normalization, we 
use the Lanczos interpolation to scale each voxel of the chest CT scan to the 
standard resolution of 334512 ×

334
512 × 1.00mm3, then pad the data into the standard 

shape of 512 × 512 × 512. Note that the spatially normalized data correspond 
to the standard volume of 334 × 334 × 512 mm3, which is big enough for almost 
all patients in practice. During the signal normalization, we linearly rescale the 
original data which cast the lung window to the range of [−0.5,0.5]. Note that the 
optimal lung windows for different scanners have some differences, thus the signal 
normalization alleviates the system-specific bias in the datasets.

Segmentation models. Deep-LungParenchyma-Enhancing requires fast and precise 
segmentations for lungs, airways, blood vessels and COVID-19-visible lesions. We 
have developed a SOTA COVID-19 lesion segmentation model10, which uses a 2.5D 
segmentation algorithm. For the segmentation of lungs, we customized the 2.5D 
segmentation algorithm. To segment the airways and blood vessels, we developed 
a two-stage segmentation protocol, which is based on our 2.5D segmentation 
algorithm but uses a specifically designed loss function (feature-enhanced loss) 
and a two-stage training and inference procedure. These approaches make our 
segmentations greatly exceed existing methods, especially for tiny structures, which 
enables the sampling of healthy parenchyma and removes irrelevant tissues.

2.5D segmentation algorithm. The 2.5D segmentation algorithm combines the 
two-dimensional segmentation results from XY, YZ and XZ planes, and then 
outputs the final three-dimensional segmentation. We used the 2D U-net to get 
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the two-dimensional segmentation results, and we further used ensemble learning 
to combine the results from different views. We used this algorithm to segment 
lungs for the DLPE method, and the segmentation reaches SOTA performance. 
The detailed workflow for the 2.5D segmentation algorithm is explained in 
Supplementary Section 1.2.

It is true that the off-the-shelf three-dimensional models such as 3D U-net  
and 3D V-net may extract more information, but they are orders of magnitude 
slower than the 2.5D algorithm: in the lung segmentation task, using two V100 
GPU, the 2.5D algorithm takes 4.5 s, whereas 3D U-net needs 530 s. However, the 
F1-score (the harmonic mean of precision and recall) for the 2.5D segmentation 
algorithm and SOTA three-dimensional models are very similar. We thus used  
the 2.5D segmentation algorithm as the basis of DLPE segmentation models, as  
it is fast and accurate, which is suitable for large dataset analysis and  
clinical applications.

Feature-enhanced loss. In our 2.5D segmentation algorithm, the inputs of the 2D 
U-nets are cross-sections of the human chest. In these cross-section images, the 
masks of airways and blood vessels are presented as disconnected regions. The 
size of these regions varies greatly: cross-sections for aortas are hundreds of pixels, 
whereas cross-sections for tiny blood vessels are only of a few pixels. However, 
traditional loss functions that are based on voxel-wise performance (like voxel-level 
cross-entropy loss, dice loss and so on) give too little focus for tiny regions, as the 
area summation of all tiny regions are far less than that of big ones, which will lead 
to misdetections for tiny structures. We thus proposed the feature-enhanced loss 
that helps the 2D U-nets extract features of tiny structures.

Feature-enhanced loss is a voxel-level balanced cross-entropy loss. It is the 
summation of all voxel loss. For each voxel, the loss is defined as:

voxel loss = −w × ln (p) × p′ − ln (1 − p) × (1 − p′), (1)

where p is the predicted probability that the voxel is positive (inside the structures 
to be segmented), and p′ is the ground truth probability that the voxel is positive, 
which is a binary value; w is the weight indicating the penalty for the false negative 
prediction of this voxel, and penalty weights for the false positives are always 1 (we 
also tried other values which are discussed in Supplementary Section 1.3.6). Every 
positive voxel (p′ = 1) has a specific w, which quantifies the focus for the voxel: with 
higher w, the model will put more focus on the voxel.

The idea to calculate w is intuitive: airways and blood vessels have affine 
self-similarity, thus we require the summation of w for each branching level to be 
the same, because the features from different branching levels are similar while 
different in the scale (they are associated by affine transformations). Here we 
formulized the branching level: the biggest tube (level 0) splits into several (for 
example, 2) big tubes (level 1), and the level 1 tubes further split into a number of 
(for example, 4) level 2 tubes. In practice, CT images allow experienced radiologists 
to distinguish up to levels 7–9 for airways and levels 10–12 for blood vessels. We 
used the cross-section pixel number of the tube to approximate its branching level: 
we found that Al, the average cross-section pixel number for the branching level l, 
roughly satisfies the relationship Al = A0αl, for example, for blood vessels, A0 = 589, 
α = 0.411. In other words, the regions which have the area (number of pixels) 
within [Ai+1, Ai) are considered from branching level i, and the summation of w for 
all regions from branching level i is required to be a constant.

Let A be the region area which is an integer equals to the number of pixels 
of the region, f be the number of regions with area A in our dataset, and r be the 
Pearson coefficient score. We found that the the power law function is a good fit 
for the f–A relationship, that is, f = c0A−γ, as their log–log plot can be considered as 
a straight line (Extended Data Fig. 3)24:

For blood vessels, we analysed 1,594,446 regions and found γ = 1.92:

ln (f ) = −1.92ln (A) + 18.1, r = −0.9944. (2)

For airways, we analysed 420,667 regions and found γ = 1.75:

ln (f ) = −1.75ln (A) + 16.0, r = −0.9961. (3)

The cross-section area between the branching level i and i + 1 belongs to 
[A0αi+1, A0αi); the total area for the branching level i to i + 1 is therefore given by:

total area for level i =
A0αi

∫

A0αi+1
f (A)AdA =

A0αi

∫

A0αi+1
c0A−γAdA (4)

If γ = 2, we have:

total area for level i =
A0αi

∫

A0αi+1
c0A−1dA = −c0ln(α) (5)

The physical meaning of γ is: γ < 2 means that the total area for tiny regions is 
small; γ > 2 means that the total area for big regions is small; and γ = 2 means that 
the total area is a constant for each branching level.

Denote the average w of a region with area A as w̄(A), and then the sum of w̄A 
for A∈[Ai, Ai+1] is given by:

focus level i =
A0αi

∫

A0αi+1
f(A)w̄(A)AdA =

A0αi

∫

A0αi+1
c0A−γ w̄(A)AdA. (6)

We want the focus for each branching level to be a constant, thus a simple 
solution is to set:

w̄ (A) = c1Aγ−2, (7)

where c1 is any positive constant. We then have:

focus level i =
A0αi

∫

A0αi+1
c0A−γc1Aγ−2AdA = −c0c1 ln (α) . (8)

Using equations (2), (3) and (7), w̄ for airways follows w̄ = c1A−0.25, and for 
blood vessels w̄ follows w̄ = c1A−0.08. The total focus for one region is w̄A, and 
considering that the boundary pixels contain more information than insider pixels 
for the segmentation task (explained in Supplementary Section 1.3.6), we set the 
boundary pixels to have higher w: first, half of w̄A is equally allocated to all pixels 
and then the other half of w̄A is added equally to boundary pixels.

Finally, for class balance consideration, all w is multiplied by a constant to 
make the total focus for positives (sum of w) equal to the total focus for negatives 
(sum of penalty for negatives, which equals to the number of negatives).

Two-stage segmentation protocol. Using the 2.5D segmentation algorithm 
with the feature-enhanced loss, we achieved SOTA dice score (0.86 for 
airway segmentations and 0.89 for blood vessel segmentations). However, the 
segmentations for small tubes are not very natural: the segmented boundaries may 
zigzag, and are not smooth or continuous, and the dice score for tiny structures 
that have branching level > 5 is not satisfactory: 0.52 for tiny airways and 0.80 
for tiny blood vessels. We thus proposed the two-stage segmentation protocol to 
further refine the results of the 2.5D segmentation algorithm, which dramatically 
improves the segmentations for tiny structures.

This protocol includes two 2.5D segmentation models using the 
feature-enhanced loss function: the first-stage model and the second-stage model. 
The first-stage model takes the normalized CT as input, and outputs a high recall 
mask (recall = 0.95) and a high precision mask (precision = 0.93) separately, which 
narrow down the search space of the second-stage model by thousands of times 
(Extended Data Figs. 4 and 6). The second-stage model takes the normalized CT, 
the high recall mask and the high precision mask as inputs, and outputs the final 
segmentation results.

When segmenting tiny structures, the second-stage model only needs to search 
in a very small search space guided by the high recall and the high precision masks. 
Thus, the second-stage model gives better segmentation performance, especially 
for tiny structures, which looks natural and very similar to human segmentations. 
The two-stage segmentation protocol reaches mean dice score of 0.87 for airways 
and 0.91 for blood vessels. For tiny structures that have branching level > 5, the dice 
score improvements are substantial: mean dice improves to 0.78 for tiny airways 
and 0.85 for tiny blood vessels.

In addition, the two-stage protocol considerably improves the robustness of the 
segmentations for airways and blood vessels. See Supplementary Section 1.4 for 
detailed discussions and visual interpretations.

Visual interpretations of airway and blood vessel segmentation models. The Extended 
Data Fig. 4 gives illustrations for the feature-enhanced loss, the high precision 
mask and the high recall mask.

We modified the Grad-Cam25–27 to visualize the discriminative regions 
(Grad-Cam on the bottleneck layer) and feature-importance map (Grad-Cam 
on the last convolutional layer) for the segmentation models (see Supplementary 
Section 1.2.8 for detailed methods). As shown in Extended Data Figs. 5 and 
6, the first-stage model searches on a wide range of regions that may contain 
discriminative features, whereas the second-stage model only focuses on regions 
that contain airways or blood vessels.

Parenchyma enhancement. Based on the segmentations, we could remove 
irrelevant tissues other than pulmonary parenchyma as well as regions with known 
lesions, we then randomly sampled 20,000 voxels from the remaining parenchyma 
of each scan.

The baseline CT value is defined as the median CT signal of the sampled 
voxels. Note that when blood vessels, airways and known lesions are removed from 
pulmonary parenchyma, there remain few tissues such as bronchiole, mediastinum, 
lymph glands and so on; however, they are negligible in the volume, which means 
that the median of the sampled CT signals can efficiently remove such noise and 
provide the baseline CT value for healthy parenchyma.

During the calculation of standard deviation of healthy parenchyma CT, we 
discarded 20% of the largest and the lowest CT values to remove outliers and 
potential subvisual lesions.

The optimal window centre and window width for inspecting the subtle 
parenchyma lesions are determined by baseline CT and the standard deviation, σ. 
For every CT image, we clipped the CT signal and gave radiologists in our study 
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two enhanced versions: one clipped with [baseline, baseline + 3σ], and the other 
one clipped with [baseline − 3σ, baseline]. Extended Data Fig. 7 gives illustrations 
of how medical experts view the enhancements. On the other hand, the enhanced 
CT for AI systems is the linear rescale of the original CT signals, which effectively 
removed scan-level bias:

enhanced CT = (original CT − baseline)/σ. (9)

On the healthy people dataset, we found that the scan-level σ is 39.5 ± 6.2 under 
the Hounsfield scale, and the scan-level σ on the follow-up CT dataset is 40.6 ± 6.9, 
which is close to that of healthy people. This consistency further supports the 
calculation of σ. In addition, on the follow-up dataset, scan-level standard 
deviations for CT signals of subvisual parenchyma lesions are 154.6 ± 47.2, which is 
much bigger than that of healthy parenchyma (P < 0.0001).

Quantification of lesions. The parenchyma enhancement removes irrelevant 
tissues and enhances the lesions for dozens of times compared to the lung 
window. Thus, some previously invisible lesions can be identified by radiologists, 
and radiologists give annotations for regions that look very different from the 
same type of images of healthy people. D.X., X.M. and X.X. were the radiologists 
responsible for the annotations of novel lesions in this study, and they all have 
more than twenty years of experience in interpreting chest CT scans.

The quantification of novel lesions has two steps: (1) training of the voxel-level 
novel lesion segmentation model and (2) quantification of interpretable radiomics. 
For step 1, the lesion segmentation model takes input of the enhanced CT (defined 
by equation (9)) and outputs the masks for both known and novel subvisual 
lesions. To this end, we used our 2.5D segmentation algorithms, but with a 
human-in-the-loop procedure: first, we trained an initial model on the existing 
COVID-19 lesion dataset of 1,193 inpatients scans, which means that the initial 
model can give SOTA segmentations for known lesions. Second, aided by DLPE, 
the radiologists in our study provided region-of-interest level annotations for 
regions that are likely to contain subvisual lesions for 34 CT scans. The initial 
model was trained on these region-of-interest level annotations and had basic 
abilities to detect subvisual lesions, which then gives coarse segmentations for all 
of the 1,412 COVID-19 CT scans. Finally, radiologists further refined 201 out of 
the 1,412 coarse segmentations, which are used as ground truth annotations. We 
thus obtained a powerful segmentation model that automatically gives voxel-level 
segmentations for both visible and subvisual lesions.

In step 2, we quantified the lesion volume ratio, the median lesion severity and 
the total lesion severity for all parenchyma and for lower respiratory parenchyma, 
respectively. We thus had six interpretable radiomics. The lesion volume ratio 
is defined as the volume of lesions divided by the volume of parenchyma; the 
median lesion severity is the median of the CT signal difference of lesions and 
baseline CT (the two kinds of novel subvisual lesions always have higher CT 
signals than healthy parenchyma as they should be caused by plasma fluid leakages 
and fibroproliferation); and the total lesion severity is the integral of CT signal 
difference of lesions and baseline CT. In addition, we approximated the ‘lower 
respiratory parenchyma’ with the blood vessel mask: if the nearest blood vessel 
for a parenchyma voxel has branching level > 7, we considered this voxel to be 
‘lower respiratory parenchyma’ (see Extended Data Fig. 8 for lower respiratory 
parenchyma).

Data analysis. When the novel subvisual lesions are discovered and quantified, 
we evaluated how these subvisual lesions correlate with symptoms and clinical 
metrics, which helped us understand the origins and consequences of these novel 
lesions. We thus needed to answer two questions: (1) whether main symptoms 
and clinical metrics can be explained by the novel lesions; and (2) how much 
information is provided by the novel lesions in the regression or classification 
tasks to predict clinical metrics. To this end, we used several efficient data analysis 
methods including Lasso regression, XGBoost and multivariable analysis. Lasso is a 
light and efficient regression model. XGBoost is a powerful regressor that can rank 
feature importance and select features. We also used an algorithm based on neural 
networks for multivariable analysis.

Feature and target selection. We needed to evaluate whether main symptoms and 
clinical metrics can be predicted by subvisual lesions. During the multivariable 
analysis, the neural network tries to form mappings between input features with 
symptoms and metrics that minimize the loss function, which quantifies the overall 
prediction error. The loss function forces the network to give more attention to 
symptoms and metrics that can be predicted, and also quantifies the predictabilities 
for these symptoms and metrics. More details about this multivariable analysis 
method are in Supplementary Sections 2.3.2–2.3.6.

For respiratory sequelae, there are 16 metrics that measure the life quality 
decrease and lung function impairments. We selected 53 informative features 
(Supplementary Table 9): 21 statistics of key clinical metrics and 3 radiomics 
during hospitalization, 5 basic information features, 6 follow-up CT radiomics and 
18 key follow-up blood test features. We thus tried to map the 16 sequelae metrics 
with these 53 features. We found that the SGRQ score is the most predictable 
sequela, which draws 32.6% of the model’s total focus. Other predictable metrics 
are total lung capacity, expiratory reserve volume and so on (see Supplementary 

Tables 10 and 11 for more details). These results conform with past knowledge of 
pulmonary fibrosis sequelae.

For inpatient clinic metrics, we focused on their correlations with PFR. We 
selected 12 informative features (Supplementary Table 8), including 3 radiomics 
(the median lesion severity, the lesion volume ratio and the total lesion severity of 
all parenchyma); 6 clinic metrics (LDH, CRP, lymphocyte count, neutrophil count, 
D-Dimer, and the ratio between the lymphocyte count and the neutrophil count); 
and 3 basic information features (sex, age and body mass index).

Feature importance ranking. Both XGBoost and multivariable analysis 
can quantify the discriminative power of features and select optimal feature 
combinations. Both methods show that subvisual features from DLPE are one of 
the most important for predicting key COVID-19 clinical metrics and sequelae 
(Supplementary Tables 10 and 11). These results indicate that the DLPE method 
can extract important information that has the best discriminating power for 
various key clinical metrics and COVID-19 respiratory sequelae.

Regression models. We tried Lasso regression, XGBoost and multivariable 
analysis. Among them XGBoost outperforms the other two in most cases. We 
therefore used XGBoost to predict PFR and respiratory sequelae. We used 
leave-one-out cross-validation to predict the target value, and we used the 
PCC between the predicted and the ground-truth to evaluate the regression 
performance. Extended Data Fig. 1 presents the detailed performance and ablation 
results without the DLPE method. As it is very hard to collect a large amount of 
follow-up data, the performance of the regression models may be improved  
with more data.

Ethics statement. The patient data were collected from The First Affiliated 
Hospital of Harbin Medical University following the approval from the 
Institutional Review Board. The study was also approved by the Institutional 
Biosafety and Bioethics Committee at King Abdullah University of Science  
and Technology. Informed consent was waived on the training cohort and 
the inpatient cohort due to the retrospective nature of the study. All involved 
participants in the survivor cohort gave informed consent before their 
participation in the study.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The anonymized follow-up CT data that support the findings of this study are 
attached publicly with the trained models. See https://github.com/LongxiZhou/
DLPE-method (ref. 28) for step-by-step guidance for downloading the CT data and 
the trained models. The datasets for the training of the DLPE method are available 
from the corresponding author on reasonable request. Detailed manuals for the 
replication of our study are in the Supplementary Information.

Code availability
The source code and the trained models for a working version of DLPE is available 
at https://github.com/LongxiZhou/DLPE-method (ref. 28).
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Extended Data Fig. 1 | PCC when predicting COVID-19 long-term respiratory sequelae. Using inpatient and follow-up clinical metrics and radiomics 
to predict the COVID-19 long-term respiratory sequelae. See Supplementary Table 7 for the descriptions of these sequelae (the first column). See 
Supplementary Table 9 for the description of these targets (the third column). The prediction model is XGBoost. First column, the 16 sequelae. Second 
column, the PCC between the predicted value and the ground truth value. Third column, the top three most informative features ranked by the XGBoost. 
Fourth column, replace the radiomics with the lesion quantification of the state-of-the-art methods for COVID-19 lesions, but without using the DLPE 
scheme, and re-train the model. Fifth column, radiomics that without DLPE to remove bias will significantly decrease the PCC: * means p < 0.01, ** means 
p < 0.001 and *** means p < 0.0001. We compare the second column and the fourth column, and the best performer is in bold.
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Extended Data Fig. 2 | DLPE enhancements for other lung diseases. DLPE enhancements for other lung diseases. (a-d) are different kinds of pneumonia, 
and DLPE can make robust enhancements for various data quality and lesion severity: (a) fungal pneumonia; (b) immunodeficiency pneumonia; (c) H1N1 
pneumonia; (d) COVID-19 pneumonia. (e-h) are examples of DLPE enhancements that may help radiologists observe the lesions: (e) tuberculosis; (f) a 
high risk nodule that may develop to cancer (red arrow); (g-h) lung cancers (red arrow).
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Extended Data Fig. 3 | The log-log plot for the f~A relationship for blood vessels and airways. The log-log plot for the f~A relationship 
for blood vessels (the left panel) and airways (the right panel). The linear regression for the log-log plot of the blood vessels results in 
ln (f) = −1.92ln (A) + 18.1, r = −0.9944. The linear regression for the log-log plot of the airways results in ln (f) = −1.75ln (A) + 16.0, r = −0.9961. 
Thus, the power law function is a good fit for the f~A relationship for blood vessels and airways.
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Extended Data Fig. 4 | Illustration for the two-stage protocol and feature-enhanced loss. Illustration for the two-stage protocol and feature-enhanced 
loss. (a,b) high precision and high recall masks; (c,d) the feature-enhanced loss. For (a,b), the red lines give the boundary of the ground truth of the 
airways, while the white regions are the high precision mask. (c) Gives the penalty weight (yellow means higher, blue means lower) for the false negative 
prediction, and the penalty weight distribution is determined by the branching level. (d) Gives the penalty weight (yellow means higher, blue means lower) 
for the false positive prediction: here is to get the airway segmentation, and the penalty weight for each non-airway voxel is a constant that ensures the 
total weights for positives and negatives are class balanced.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNATurE MACHInE InTELLIgEnCE ArticlesNATurE MACHInE InTELLIgEnCE

Extended Data Fig. 5 | Visual interpretation for the first-stage and the second-stage models when segmenting the airways. Visual interpretation for the 
first-stage and the second-stage models when segmenting the airways. (a) The spatial rescaled CT from the x-y plane. (b) Red regions give the ground 
truth for the airways. (c) The discriminative regions for the first-stage model. We can see that when segmenting the airways, the model searches on a wide 
range of regions that may contain discriminative features. (d) The discriminative regions for the second-stage model. We can see that the second-stage 
model only searches on the regions that contain airways. (e) The feature importance map for the first-stage model. We can see that the model focuses on 
the region broader than the airways, as the model needs to find out where the tracheal walls are. In addition, the first-stage model also focuses on some 
wrong regions. (f) The feature importance map for the second-stage model. We can see that the second-stage model only focuses on the airway regions.
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Extended Data Fig. 6 | Visual interpretation for the first-stage and the second-stage models when segmenting the blood vessels. Visual interpretation 
for the first-stage and the second-stage models when segmenting the blood vessels. (a) The spatial rescaled CT from the x-y plane. (b) Red regions give 
the ground truth for the blood vessels. (c) The discriminative regions for the first-stage model. We can see the model looks on wide regions, for example, 
the model searches on the bottom part where there are no blood vessels. (d) The discriminative regions for the second-stage model. We can see that 
the discriminative regions for the second-stage model are much more concentrated. (e) The feature importance map for the first-stage model. We can 
see that the model falsely focuses on the bottom regions. (f) The feature importance map for the second-stage model. We can see that the second-stage 
model only focuses on the blood vessels, and puts more focus on tiny vessels.
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Extended Data Fig. 7 | Illustration for how medical experts view the enhancements. Illustration for how medical experts view the enhancements. For a CT 
scan aimed to find subvisual lesions, each CT slice will be presented as: the lung window CT, [baseline,baseline + 3σ] and [baseline,baseline−3σ]. At the 
same time, medical experts can view CT slices from thousands of healthy people for reference.
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Extended Data Fig. 8 | Illustration of the lower respiratory regions. Illustration of the lower respiratory regions. We use the branching level of the nearest 
blood vessels to approximate the lower respiratory regions. (a) Branching level of the nearest blood vessels. Brighter means higher branching level, and the 
brightest is of branching level around 12. (b) Red regions give the estimated lower respiratory regions. If the nearest blood vessel is of branching level > 7 
for a parenchyma voxel, we classify the voxel as a lower respiratory voxel.
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