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Unveiling the power of languagemodels in
chemical research question answering
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While the abilities of language models are thoroughly evaluated in areas like general domains and
biomedicine, academic chemistry remains less explored. Chemical QA tools also play a crucial role in
both education and research by effectively translating complex chemical information into an
understandable format. Addressing this gap, we introduceScholarChemQA, a large-scaleQA dataset
constructed from chemical papers. Specifically, the questions are from paper titles with a question
mark, and the multi-choice answers are reasoned out based on the corresponding abstracts. This
dataset reflects typical real-world challenges, including an imbalanced data distribution and a
substantial amount of unlabeled data that can be potentially useful. Correspondingly, we introduce a
ChemMatchmodel, specifically designed to effectively answer chemical questions by fully leveraging
our collected data. Experiments show that Large Language Models (LLMs) still have significant room
for improvement in the field of chemistry. Moreover, ChemMatch significantly outperforms recent
similar-scale baselines: https://github.com/iriscxy/chemmatch.

Question Answering (QA) models have emerged as crucial tools for
acquiring knowledge and evaluating domain-specific abilities. For example,
QA models are designed to provide precise answers to a wide range of
queries, thus assisting in the dissemination of information and the
enhancement of learning processes1–5. Correspondingly, to examine and
evaluate the accuracy of the given answers6–9, propose different QA datasets
to rank the abilities of various language models and find that these models
have flaws in different ways. Question answering is often framed as a
judgment task. For example, in the BoolQ task10, where a user poses ques-
tions about adocument, theQAmodel respondswith either “yes”or “no,” as
illustrated in Fig. 1a. This type of judgment can be challenging even in
general contexts. For instance10, found that answering natural questions is
surprisingly difficult, as they frequently require a deep understanding of
context, nuances, and specific details within the document. In scientific
domains, judgment tasks are also a common format. In studies such as11,12,
the task involves either supporting or refuting a scientific claim.QA tasks in
scholarlyfields are particularly demanding, as scientific papers often contain
specialized terminology that can be challenging to understand even for
researchers13–15. A number of domain-specific QA datasets are proposed in
the biomedical domain16–18. For example19, proposes a multi-choice bio-
medical QA dataset collected from PubMed papers, and20 collects a
multiple-choice dataset to classify which disease the patient has.21 proposes
LiteratureQA, a QA corpus consisting of papers in the computer science
domain with human-engineered questions.

However, the domain of chemical QA has not been explored as
extensively as other scientific fields, such as biology19,22. Recent inter-
disciplinary research efforts have increasingly employed languagemodels as
tools in chemistry23–26. In the meantime, chemical QA systems provide
quick, accurate access to essential chemical information, aiding in the
resolution of complex problems, understanding reactions, and the devel-
opment of new materials, thus supporting innovation and informed
decision-making in chemistry-related fields27–31. For example32, proposes
multimodal multiple-choice questions on different science topics, along
with annotations of their answers, corresponding lectures, and explanations.
The datasetmost closely related to ourwork is KGQA28, as shown in Fig. 1b.
KGQA is based on a chemical knowledge graph and relies on a template-
based approach to generate QA pairs. However, this approach lacks the
diversity found in real-world language and tends to focus primarily on
foundational chemical concepts rather than complex, practical research
questions. Additionally, KGQA depends heavily on a human-constructed
knowledge graph, limiting its adaptability and scope for broader research
applications.

In contrast to previous work, this study introduces a chemical research
QA benchmark to evaluate and improve the chemical QA capabilities of
languagemodels by leveraging the large-scale scholarly chemical papers that
are readily available. Each year, there are over 500,000 new publications in
the field of chemistry, as reported by the Web of Science, making it an
excellent resource to start with. TheQApairs in these papers originate from
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research-investigated problems rather than being artificially created for
evaluation, thus holding greater relevance and applicability to practical
scenarios in the field of chemistry. Concretely, in this paper, we propose
ScholarChemQA, a chemical QA dataset for answering research questions
with multi-choice between yes, no, and maybe. Firstly, we collected over a
million titles and abstracts related to chemistry from academic platforms.
Through a rigorous selection process, we curated 40k QA pairs where each
title, framed as a question, can be answered using the aforementioned
options. Out of these, 1k pairs were hand-labeled for training, validation,
and testing, with yes/no/maybe constituting 65.8%, 21.2%, and 13.0%,
respectively. The ‘yes’ and ‘no’ labels indicate if the abstract’s experiments
support or refute the conclusion, and the ‘maybe’ label serves as a nuanced
indicator for ambiguous ormixed evidence situations. Besides, to enrich our
dataset, we converted an additional 4k titles from statement format into yes/
no questions. An example case from our dataset is shown in Fig. 1c. To
correctly answer the question, the model should have a foundational
understanding of the behavior of a two-dimensional hole gas, the principles
of GaAs quantum wells, and the concept of phase separation. Semantic
reasoning skills are also indispensable to interpret the ‘coexistence of two
phases’ as the concurrent existence of thementionedmetallic and insulating
phases. The benefits of our datasets aremulti-faceted. Firstly, it is a chemical
QAdataset for researchpurposes, encompassing awide range of topics from
basic concepts to complex chemical processes. Secondly, it requires complex
reasoning and in-depth semantic analysis to deduce the answer. Thirdly,
ScholarChemQA sets a new benchmark for AI in real-world, academic
contexts, enhancing AI-driven exploration and discovery in chemistry.

For experiments, we first evaluate the performance of LLMs on
ScholarChemQA. Results show that even the advanced GPT-3.5 model
achieves only 54% accuracy, highlighting the difficulties faced by LLMs in
understanding research papers filled with complex terminology. Recog-
nizing the need for improvement and more accessible resources, we aim to
use our collected chemical QA dataset to develop a smaller, more precise
model. The first challenge here is that the dataset exhibits an imbalanced
attribute, where just 13% of cases belong to the ‘maybe’minority class. This
is a commonly observed characteristic in real-world datasets, as noted in
previous studies33. This imbalance becomes more pronounced when
including the automatically annotated yes/no set. The second challenge
involves the incorporationof a substantial amount of unlabeleddata.Hence,
in this paper, we introduce ChemMatch, a chemical question-answering
model with label rebalance, pseudo label calibration, and dual augmentation
to address the above challenges. Generally, our ChemMatch follows the
semi-supervised paradigm, generating pseudo-labels for unlabeled data and
training the model to predict these labels using augmented data. We first
address the issue of imbalanced label distribution by re-weighting the
instance-wise loss based on the inverse frequency of each class. The pseudo

label calibration seeks to align pseudo-label estimates with a desired ground
truth distribution. To alter unlabeled samples for creating diverse aug-
mentations, we propose a SoftMix operation that generates both question-
and context-side augmentation, not in the input space, but in their repre-
sentation space. Our experimental results demonstrate that our proposed
model significantly outperforms models of a similar scale and LLM,
marking a step forward in domain-specific QA model development.

Our main contributions can be summarized as follows:
• We collected ScholarChemQA, a chemical QA dataset for answering

research questions. This benchmark can be used to evaluate the
chemistry domain capabilities of AI models.

• We assess recent LLMs including Llama2-70B, GPT-3.5, and GPT-4
on ScholarChemQA, revealing their limitations in comprehending
chemical research papers and delivering precise answers.

• We propose an open-source, and computationally efficient model
ChemMatch. ChemMatch significantly outperforms the advanced
GPT-3.5 and GPT-4 models, providing a valuable tool for acquiring
chemical-related knowledge.

ScholarChemQA Dataset
In this section, we introduce our data collection process and some key
attributes of our collected data.

Data collection
Data sources. To compile a comprehensive collection of chemical
papers, we utilized multiple academic publishing sources including
Elsevier and Springer. The overall process is illustrated in Fig. 2a. Firstly,
by employing a combination of publisher APIs for databases such as
Scopus, ScienceDirect, Springer Nature, Cross-Ref, and Lens34, we col-
lected approximately 10 million abstracts and titles centered on
chemistry-related studies from 2000 to 2023. Then, we specifically
selected papers that have question marks in their titles to build the QA
dataset. This is because we can automatically obtain natural scholarly
questions, and the corresponding answer is usually found within the
abstract or the main content of the paper. By focusing on papers with
question marks in their titles, we aim to capture a diverse set of research
questions that are directly relevant to the field of chemistry. This
approach allows us to construct a dataset that is rich in domain-specific
questions and answers, providing a valuable resource for training and
evaluating question-answering models in the scientific domain. In this
work, we employ a multi-choice setting, where the questions are
answered with ‘yes’, ‘no’, or ‘maybe’. This approach simplifies the
response format and allows for a more straightforward evaluation of the
question-answering model’s performance. By restricting the answers to
these three options, we can focus on themodel’s ability to understand and

Fig. 1 | Comparison of differentQAdatasets in different domains.Comparison of
(a) general domain QA dataset BoolQ, (b) chemical domain dataset KGQA, and (c)
our ScholarChemQA dataset. Our dataset is sourced from chemical research papers,

in contrast to previous chemical datasets, which were artificially constructed. Our
dataset contains text rich in domain-specific information, making it highly suitable
for evaluation.
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categorize the information presented in the text, making it easier to assess
its accuracy and reliability in a controlled setting.

Note that not all questions can be answered with a yes/no/maybe
response. To handle this, we followed a rule-based approach, where
we excluded questions that start with interrogative words (e.g., wh-words)
or involve selecting from multiple entities. During our initial investigation,
we found that approximately 10% of the abstracts contained a
conclusion subsection that could be considered as the response to the
associatedquestion.To enhance the challengeof reasoning,we excluded this
section from our context. Finally, we obtained 40k cases that cover various
topics, and the distribution of papers from various sources is shown
in Fig. 2b.

Expert annotation and quality control. Since the original dataset lacked
answer labels for the question titles, we conducted an expert annotation
process to collect a labeled dataset. The annotation criterion was as fol-
lows: We choose to annotate a question with ‘yes’ when the experiments
and results of the paper substantiate it. Conversely, we use ‘no’when they
contradict or refute the statement. A ‘maybe’ is annotated in two sce-
narios: (1) when the paper outlines conditions in which the answer could
be both true and false, or (2) when multiple interventions, observations,
etc., are inquired about, and the answer holds true for some but not all of
them. It is crucial to recognize that these answers are not universal truths,
but rather depend on the specific context provided in the research paper.
We employed four PhD annotators, each with a background in chem-
istry, to individually label 525 instances, yielding two annotations for
each case and a labeled dataset consisting of 1050 instances. One anno-
tator had access to the conclusion part, reducing the need for extensive

reasoning, while the other annotator was not provided with the conclu-
sion part, requiring deeper reasoning from the available context. This
separation process ensured both annotation and dataset quality. When
there was disagreement in the labeling, a third annotator facilitated dis-
cussions to achieve consensus among the two initial annotators. The
initial labeling yielded a Kappa score of 0.62, indicating substantial
agreement, and the final discussion phase ensured an overall high quality
of the data. The statistics are shown in Table 1.

For the human-annotated cases, the train, validation, and test sets
consist of 500, 50, and 500 samples, respectively. Next, we collect additional
automatically annotated training cases.

Automatic annotation. To further enrich our dataset, we used a simple
heuristic to collect noisily-labeled instances. We began by selecting
papers with statement titles that followed specific Part-Of-Speech (POS)
tagging structures (NP-(VBP/VBZ)) based on the Stanford POS tagging
scheme35. We then transformed the statement titles into questions by
employing a simple method, which involved inserting copulas like ‘is’ or
auxiliary verbs such as ‘does’ at the beginning of the sentence. We also
ensured that the transformed sentences were coherent, making necessary
adjustments like adding question marks. The yes/no answer was then
determined based on whether the verb (VB) in the sentence was negated.
For example, the title ‘Current fossil fuel infrastructure does not
yet commit us to 1.5 ∘C warming’ is changed to ‘Does the current
fossil fuel infrastructure commit us to 1.5 ∘Cwarming?’with answer ‘No’.
In cases where the complex titles involve commas or colons, we relied
on GPT-4 to automatically convert them into appropriate question for-
mats. In a random sampling of 200 rewritten questions evaluated by
GPT-4 and human for fluency, all questions were classified as coherent
and fluent.

Characteristics
In the collectedpapers obtained fromLens, themeta-informationassociated
with them provides subject information. Figure 2b presents the topic dis-
tribution of these papers. They cover a wide range of topics, including
biochemistry, theoretical chemistry, catalysis, environmental chemistry,
and material chemistry.

To delve further into the QA attributes, we performed a human ana-
lysis on a random sample of 200 examples, where we categorized the
questions into three main aspects and classified the difficulty into back-
ground knowledge-required and knowledge-free categories. The threemain
aspects are: chemical interaction (questions about how chemicals interact or
react), chemical theory (questions related to fundamental chemistry

Table 1 | ScholarChemQA statistics

Statistic Human
Annotated

Automatically
Annotated

Unlabeled

Size 1.05k 4k 40k

Prop. of yes (%) 65.8% 80.0% –

Prop. of no (%) 21.2% 20.0% –

Prop. of
maybe (%)

13.0% – –

Avg. question
length

13.87 14.14 14.20

Avg. context
length

176.01 175.15 178.41

Fig. 2 | Overview of ScholarChemQA dataset and analysis. a Illustration of data
crawling process. b Topic distribution of ScholarChemQA. c Proportional rela-
tionships between corresponding question types and reasoning types. Different
question types correspond to different reasoning types, showcasing the diversity of

our dataset. 71.5% of the questions require chemical knowledge for answering,
showing the difficulty of our chemical question-answering tasks.
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theories or principles), and chemical attributes (questions focusing on
inherent properties of specific chemicals), with the majority falling under
the category of chemical attributes. Examples of these are provided in
Table 2. Regarding the type of reasoning required, around 71.5% of the
questions require chemical knowledge for answering. The remaining
questions can be addressed through semantic reasoning. For instance, the
context “the metal center is really capable of back-donation to the carbene"
provides the answer to the question “Back-Donation in High-Valent d0

Metal Complexes: Does It Exist?" Examples can be found in Table 2. To
better illustrate the correspondence between different reasoning types and
question types, we present a Sankey diagram depicted in Fig. 2c. It can be
seen that different question types correspond to different reasoning types,
showcasing the diversity of our dataset.

Methods
In this section, we first define the task of chemical QA, then describe our
ChemMatch model in detail.

Problem Formulation
The task of building ChemMatch can be formulated as a C-class classifi-
cation problem in a semi-supervised learning setting. There are labeled
instances, denoted as qs; cs; ys

� �
, and unlabeled instances, denoted as

qu; cu
� �

, where q�; c� 2 Rd are the d-dimensional question and context
representation, and ys is the one-hot ground-truth label. To answer awithin-
context question x = {q, c}, ChemMatch makes prediction y0 as
pðy0jxÞ 2 RC . The overview for buildingChemMatch is illustrated in Fig. 3.
The loss function to minimize is L ¼ Ls þ Lu. Here Ls is the supervised
cross-entropy loss (H):

Ls ¼ H ys; y0
� �

: ð1Þ

The unsupervised consistency lossLu is defined by adopting a pseudo-
labeling approach with consistency restriction:

Lu ¼ H p̂; ŷ
� �

; ð2Þ

Table 2 | Summary of ScholarChemQA question types

Question Type % Example Questions

Chemical Interaction 21.5 Is the polarization of the C=C bond imperative for bifunctional outer-sphere C=C hydrogenation?

Do final-state interactions obscure short-range correlation effects in quasielastic Aðe; e0pÞ scattering?
Chemical Theory 35.0 Does the Oxidation of Zirconium obey Wagner’s Theory?

Deciphering mechanism of aggregation-induced emission (AIE): Is E-Zisomerisation involved in an AIE process?

Chemical Attribute 43.5 Catalytic amyloids: Is misfolding folding?

Is the solubility product constant? Introductory experiment in solubility equilibrium

Reasoning Type % Example Question & Context Snippet

Semantic Reasoning 28.5 Question: Can the supersymmetric ω parameter be generated dynamically without a light singlet?

Context: It is generally assumed that the dynamical generation of the Higgs mass parameter of the superpotential, ω, implies the
existence of a light singlet at or below the supersymmetry breaking scale,MSUSY. We present a counter-example in which the sunglet
field can receive an arbitrarily heavymass (e.g., of the order of the Planck scale,MP ≈ 1019GeV). In this example, a non-zero value of μ
is generated through soft supersymmetry breaking parameters and is thus naturally of the order ofMSUSY.

Knowledge Reasoning 71.5 Question: The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite
temperature?

Context: We have studied the magnetotransport properties of a high mobility two-dimensional hole gas (2DHG) system in a 10nmGaAs
quantumwell with densities in range of 0.7− 1.6*1010 cm−2 on the metallic side of the zero-field ‘metal-insulator transition’. In a parallel
field well aboveBc that suppresses themetallic conductivity, the 2DHG exhibits a conductivity gðTÞ � 0:3ðe2=hÞ ln T reminiscent of weak
localization. Theexperimentsare consistentwith thecoexistenceof twophases inour system: ametallic phaseandaweakly insulating
Fermi liquid phase having a percolation threshold close to Bc.

Highlighted texts are matched key phrases between types and examples.

Fig. 3 | Training framework of ChemMatch. ChemMatch is trained using both
labeled and unlabeled data. In the supervised training phase, label rebalancing is
applied to adjust the loss regarding class infrequency. In the unsupervised phase,

pseudo-labels are generated through pseudo-label calibration. The learning from
unlabeled data is through the enforcement of consistency between the pseudo-labels
and the predictions of instances augmented using SoftMix.

https://doi.org/10.1038/s42004-024-01394-x Article

Communications Chemistry |             (2025) 8:4 4

www.nature.com/commschem


where p̂ is thepseudo-label generated for unlabeled input (seeEquation (5)).
ŷ is obtained by p yjΩ xuð Þ� �

, where Ω xuð Þ represents the prediction based
on augmented variations of the question and the context (see section 3.4).
The general objective is to ensure that the predicted label of the
corresponding augmented case aligns with the pseudo-labels. In this way,
the vast amount of unlabeled cases is leveraged as well to optimize the
prediction of y.

The minimization of both supervised loss (Ls) and unsupervised loss
(Lu) is hindered by the imbalanced distribution of classes in y. Specifically,
the ‘maybe’ class is significantly underrepresented compared to the ‘yes’ and
‘no’ classes. This imbalance is further aggravated when combined with an
automatically annotated dataset that only includes ‘yes’ or ‘no’ labels. To
address these challenges, we implement a strategy of ‘label rebalance’ during
the supervised training phase and ‘pseudo-label calibration’ during the
semi-supervised learning process, which are explained in detail below.

Label rebalance
From Table 1, it is evident that in the human-annotated dataset, the ‘yes’
class constitutes 65.8%, while the least represented class accounts for only
13%. Moreover, if we combine the automatically annotated dataset into
training, the imbalance problem becomes even more severe, since the
automatic datasets are constructed based only on ‘yes’ and ‘no’ classes.
Therefore, addressing the generalization issue for the less frequent classes is
crucial.

Inspired byRef. 36,we integrate theprinciple of label rebalance into the
traditional cross-entropy loss. Intuitively, we increase the loss weight of the
less frequent class. This adaptation is advantageous for minority classes,
pushing them to have broadermargins and achieving higher accuracy. Let’s
consider a sample labeled ysi which represents a class with ny training
instances. The modified label-rebalanced softmax cross-entropy loss is
defined as:

Lbs ¼
1� β

1� βny
H ysi ; y

0
i

� �
: ð3Þ

Here, a β value of 0 indicates that there’s no re-weighting applied. As β
approaches 1, it signifies re-weighting based on the inverse of the class
frequency. The hyperparameter β and the effective sample number ny allow
a smooth adjustment of the class-balanced factor, ranging from no re-
weighting to re-weighting by inverse class frequency.

Pseudo-label calibration
Pseudo-labels are often generated by trained models for unlabeled data37,38.
By incorporating pseudo-labeled data, the model can leverage a wealth of
unlabeled data, enhancing its generalization capabilities and improving
prediction accuracy. To ensure the high quality of pseudo-labels, we cali-
brate their distribution so that it aligns with the distribution of the actual
ground truth labels.

The first operation is multiplication of the predicted and ground truth
distributions: This step enhances the parts of the predicted distribution that
match the ground truth distribution. If a certain class has a high probability
in both the predicted and ground truth distributions, its probability will
further increase after multiplication. Conversely, if a class has a high
probability in the predicted distribution but a low probability in the ground
truth distribution, its probability will decrease after multiplication. Let _p 2
RC be the prediction of the pseudo-label of one unlabeled instance.We first
multiply it with �y 2 RC , which is the distribution of ground truth labels
from annotated data ys.

Then, division by the past average distribution: This step aims to reduce
the bias in the predicted distribution caused by the accumulation of his-
torical data. If a certain class has appeared frequently in the past average
distribution, its probability will be correspondingly reduced in the new
prediction to avoid the excessive influence of past data on the current
prediction. To calibrate each _p, we estimate its distribution in one batch

pðyÞ 2 RC , e.g., by taking the average of the model’s predictions on unla-
beled examples over the last 128 batches.

The above process can be summarized as: To adjust the predicted
pseudo-labels to better reflect the true likelihood of each class, we apply the
following pseudo-label calibration operation with pointwise multiplication
and division:

~p ¼ Normalize ð _p× �y=pðyÞÞ; ð4Þ

where Normalize(a) = a/∑jaj. Together, these two steps ensure that the
pseudo-labels are both accurate (by aligning with the ground truth
distribution) and consistent (by forming a valid probability distribution),
thereby improving the model’s ability to learn from unlabeled data.

Additionally, since ground truth labels typically adopt hard (1-hot)
encoding, we further modify the calibrated pseudo-labels by applying a
sharpening function:

p̂i ¼ ~p
1
T
i =

XC

j¼1

~p
1
T
j ; ð5Þ

whereT is a hyperparameter. AsT approaches 0, the output will approach a
one-hot distribution. A reduction in T steers the model towards generating
predictionswith diminished entropy. Finally, we use p̂ as the pseudo label in
Equation (2) and proceed as usual with other processing.

SoftMix augmentation
To utilize the abundance of available unlabeled data and enhance the
learning process, the concept of data augmentation has been extensively
adopted in semi-supervised learning39. Thekey idea is to createdata variants,
make predictions, and compare them with pseudo labels to guide model
training. As introduced in the semi-supervised learning framework in
Section 3.1, augmenting unlabeled cases is necessary to formulate a con-
sistency loss.Most of the existing augmentationmethods are in input space.
For example, augmentation on images includes rotation, cropping, and
flipping, and text-domain augmentations include back translation37 and
synonym substitution40. However, studies41,42 suggest that interpolations in
hidden layers can capturemore advanced information, enhancing semantic
diversity and providing additional training signals. For example, enhancing
diversity in latent spaces can improve the robustness of text generation
models43. Inspiredby these insights,we introduce theSoftMix augmentation
operation, designed to increase diversity and strengthen robustness by latent
space augmentations.

As ourQAparadigm consists of the question and the input document,
we naturally have two kinds of augmentation results by using back trans-
lation to translate these two parts respectively. Back translation means
translating text from the source language to a target language and then
translating it back to the original language. This process helps generate
linguistically diverse versions of the question and document, which
can improve the model’s robustness and ability to handle varied phrasings
in QA tasks. We refer to the input with a back-translated question as
‘question-augmented’, and the same goes for ‘context-augmented’. Let xa be
the question-augmented input representation, and xb be the answer-
augmented representation. Among xa, xb and the original input xu, one can
be randomly selected to act as a source of perturbation to modify the other
inputs. For instance, if xa is selected for perturbation, both xu and xb are
modified as:

x0� ¼ λx� þ 1� λð Þxa; ð6Þ

λ � Beta ðα; αÞ; ð7Þ

wherex0� represents thenew training input derived from x* (xu and xb in this
example case), and α is a hyperparameter for Beta distribution. The
representations of two augmented cases are separatelymixedwith their own
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original representation to produce new training inputs with the same
training target, i.e., the pseudo label. Thewhole process is illustrated inFig. 3.

Note that our SoftMix operation is different from the previous
RemixMatch operation in Ref. 39. In theirmethod, they perform aweighted
sum of multiple input hidden states and output states to form new training
samples. In contrast, in our work, we establish a mixture operation only in
the input space with representations that have similar semantic meanings,
keeping the target the same. This maintains a balance between diversity in
the latent space and the fundamental generative capability without inter-
ference. In the experiments section 4, we will show that our method sig-
nificantly outperforms RemixMatch.

The newly generated training inputs share the same prediction
objective, i.e., the pseudo label. Therefore, their predictions are compared
against the pseudo label of xu, leading to the calculation of the consistency
loss in Equation (2). Formally, given our augmented andmixed batches, the
standard consistency loss in Equation (2) is changed to:

Lm ¼
X

�2fa;b;ug
H p̂;Ωðx0�Þ� �

: ð8Þ

We additionally utilize xa, comprising a sole augmented rendition of the
question and its predicted labels, excluding the application of SoftMix. This
not only offers a subtle enhancement in performance but also contributes to
heightened stability:

Lc ¼ H p̂;ΩðxaÞð Þ: ð9Þ

The ChemMatch model is optimized by Lbs þ Lm þ Lc.

Results
Baselines
We first compare ChemMatch with a basic Supervised baseline model,
which is trained by using only the human-annotated dataset. In addition,we
compare ChemMatch with a biomedical baseline PubMedQA19 that
leverages labeled data to produce static pseudo-labels for the unlabeled
samples, which are subsequently utilized to train the classification model.
PubMedQA is a multi-phase finetuning process, while our model follows
end-to-end fashion with our unique softmix and rebalance operations.

We also compare with strong semi-supervised baselines:
FixMatch44 is a classic semi-supervised baseline that uses pseudo-

labeling on a weakly augmented version of the data and then enforces
consistency between these pseudo-labels and the predictions on a strongly-
augmented version of the same data. The pseudo-label is only retained if the
model produces a high-confidence prediction.

FreeMatch38 adjusts the confidence threshold of pseudo labels in a self-
adaptive manner according to the model’s learning status.

SoftMatch37 derives a truncated Gaussian function to weight pseudo
samples based on their confidence, which can be viewed as a soft version of
the confidence threshold.

Ourmodel differs from the above approaches by leveraging all pseudo
labels and aim to enhance their accuracy.

RemixMatch39 introduces a remix operation in latent space that
combines multiple cases to create new learning inputs and targets. This
approach fundamentally differs from our SoftMix operation, which mixes
information within a single case while maintaining the same target.

We also include open-source LLM baselines, such as Llama2-70B45,
GPT-3.5, and GPT-4.

Datasets
Our ChemMatch model, though originally designed to address the imbal-
ance phenomenon prevalent in scholarly papers, is applicable to a variety of
other contexts where similar imbalances occur. Several imbalanced text
classification benchmark datasets have been developed reflecting these
scenarios. To evaluate our model’s effectiveness beyond the specialized
chemical question answering dataset, we tested it on established benchmark
classification datasets46. The AGNews dataset, extracted from AG’s corpus
of news articles on the web, utilizes the four largest classes from this corpus.
The Yahoo Answers dataset is a topic classification dataset featuring ques-
tions and best answers from Yahoo!’s ten largest categories, including the
question title, content, and best answer. The Yelp-5 dataset originates from
the Yelp Dataset Challenge in 2015. We adopt the task of predicting the
number of stars given by the user. Lastly, the Amazon-5 dataset from the
Stanford Network Analysis Project comprises Amazon reviews. The data
used for classification includes both the review title and its content.

Evaluation metrics
Each experiment is repeated five times with different data splits following
previous works19,47, and we report the average test accuracy and weighted
F1 scores. Accuracy reflects the proportion of accurate predictions among
all instances, yet it overlooks the precision of individual classes. On the
contrary, weighted-F1 computesmetrics for each label and determines their
average, considering the number of true instances for each label in the
weighting process.

Experimental results
Outperforming similar-scale models. In Table 3, we present the per-
formancemetrics of recent baselines and ourmodel across diverse dataset
settings. The imbalance ratio γ represents howmany times larger the size
of the biggest class is compared to the smallest one, and γ ranges from 5
(Setting 1) to 48 (Setting 4). A few observations can be made from
the table.

Firstly, semi-supervised baselines surpass the naive supervised
baselines in most scenarios, which shows the necessity of learning
from unlabeled cases. Secondly, it is valuable to have a larger pool of

Table 3 | Performance of different models on datasets of various labeled imbalance ratio γ

Model Setting 1 (500/40k, γ = 5) Setting 2 (2k/20k, γ = 23) Setting 3 (2k/40k, γ = 23) Setting 4 (4k/40k, γ = 48)

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Supervised 66.84 66.71 69.80 68.57 69.80 68.57 70.62 68.59

PubMedQA 67.56 67.30 71.20 69.37 72.12 69.45 72.30 67.72

FixMatch 67.64 64.74 71.40 69.46 72.34 69.14 72.98 68.96

SoftMatch 70.16 67.38 71.53 69.71 72.24 69.75 73.54 68.99

FreeMatch 69.56 66.42 72.14 70.23 72.60 69.72 72.68 68.13

ChemMatch 71.36 68.55 73.12 70.84 73.84 70.93 74.28 71.06

- Improvement (%) +2.59% +3.20% +1.36% +0.87% +1.71% +1.74% +2.20% +4.30%

Thenumbers in thebracket are thenumber of supervisedandunsupervisedcases in trainingset, respectively.Numbers inbolddenotesignificant improvementsover theFreeMatchbaseline, asdetermined
by a two-tailed paired t-test with a p-value < 0.05. This notation is consistently used throughout the tables. The improvement percentage is compared to the overall best baseline, FreeMatch.
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unsupervised data and supervised data. For instance, comparing Setting 2
and Setting 3, even though the supervised count remains the same,
there is an improvement or consistent performance when more unsu-
pervised data is added. Thirdly, the ChemMatch model consistently
outperforms other models across all configurations. While Accuracy
provides a measure of overall performance, the F1 score additionally
captures the equilibrium of accuracy across various classes. Our model
excels in both these metrics, thus highlighting its resilience across
diverse data distributions and emphasizing its effective utilization of both
supervised and unsupervised data.

Performanceongeneral-domaindatasets. The scenario of imbalanced semi-
supervised learning is commonly observed in real-world settings48–51. To
verify the generalizability of our model, we further evaluated our model on
four benchmark datasets. To simulate an imbalanced setting, we set the
imbalance ratio γof 5 for labeled data and150 for unlabeled data, a common
setting in image classification37. For example, for AGNews dataset in setting
1, the case numbers across four categories are [40, 23, 13, 8]. In setting 2, the
number distribution is [200, 116, 68, 40]. The results are shown in Table 4,
where our model outperforms most of the other baselines across different
settings. For instance, ourmodel achieves 87.38% accuracywith 200 labeled
instances, outperforming FreeMatch’s 86.53%. These results demonstrate
the generalization and robustness of our ChemMatch model in handling
imbalances in different domains and settings.

Comparison with large language models. We compared our model
with Llama2-70B, Meditron-70b52, GPT-3.5, GPT-4 across 200

sampled cases, where the chain-of-thought prompt is in the Sup-
plementary Note 1. The accuracy and F1 results are shown in Fig. 4.
Our model surpasses the three baseline models probably because it is
trained explicitly on the chemical corpus, hence, it’s enriched with
corresponding knowledge. The advantages of our model become
more evident when considering the large size and great computa-
tional source of LLMs. Additionally, Meditron-70b fails to provide
answers to the questions and instead simply repeats them, as
observed in related queries at https://github.com/epfLLM/meditron/
issues/13, demonstrating that further training is required for
this model.

Prompt discussion. We employed various strategies when testing LLMs,
including chain-of-thoughts and few-shot learning, in designing the
prompts. However, we observed that neither strategy substantially
enhanced performance. For few-shot learning, the limited improvement
may be attributed to the dissimilarity in content among the test
questions, indicating a necessity for more targeted selection of in-context
learning cases. We assume the reason is that the limitations of LLMs in
chemical QA task are more related to a deficit in domain-specific scientific
knowledge rather than the thinking strategy. This insight directs us towards
strengthening LLMs’ domain-specific scientific knowledge in chemical
QA tasks.

Case study. We also give an error analysis on the output of LLMs in Fig. 5.
Generally, we observed that both GPT-3.5 and GPT-4 often provide
ambiguous ‘maybe’ answers, even when the input clearly warrants a defi-
nitive ‘yes’or ‘no’ response, For instance, the conclusion is initially presented
in the input as ‘the proton can be encapsulated’. The subsequent details then
delve into the specific conditions under which the proton can or cannot be
encapsulated, creating confusion for the LLMs, as evidenced by the outlined
reasons. These examples highlight the inconsistency between the LLM’s
reasoning process and its final conclusions, which points to further
improvement.

DISCUSSION
Ablation study
In Table 5, we assess the contributions of ChemMatch’s main components
in four Settings. Take setting 4 as an example, the full ChemMatch model,
with an accuracy of 74.28%andF1 score of 71.06%, outperforms its variants.
Excluding label rebalancing results in reduced performance, with accuracy
and F1 scores dropping to 73.96% and 70.32%, respectively. The perfor-
mance drops even further when pseudo-label calibration is removed. These
findings underscore the importance of class balancing. Finally, the lack of
the SoftMix component (when Lm is absent and only Lc is utilized) hurts
performance in both metrics, underscoring the benefits of augmenting
diversity. The comparative performance is consistent throughout different
datasets, which demonstrates the robust effectiveness of our proposed
modules.

Table 4 | Accuracy (%) performance of baselines and our ChemMatch on four classification benchmark datasets. with γ = 5 for
labeled data and γ = 150 for unlabeled data

Model AG News Amazon Yahoo Yelp

# Labels 40 200 250 1000 500 2000 250 1000

PubMedQA 82.63 84.97 50.37 53.32 66.63 67.20 54.70 57.78

FixMatch 82.68 86.20 50.59 54.68 67.37 67.37 54.07 57.33

SoftMatch 83.51 85.91 50.39 54.54 66.59 68.33 54.62 56.40

FreeMatch 84.34 86.53 51.32 54.32 66.03 68.28 53.46 55.81

ChemMatch 85.51 87.38 52.10 55.49 68.52 68.20 55.68 57.54

The # Labels indicate the count of the most populous category. Numbers in bold denote significant improvements over the FreeMatch baseline, as determined by a two-tailed paired t-test with a p-value
< 0.05.

Fig. 4 | The accuracy (%) and F1 scores (%) of our model and LLMs on the
ScholarChemQA dataset. It can be seen that our ChemMatch outperforms other
baselines, significantly surpassing Llama2 and GPT-3.5.
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Effectiveness of label rebalance. We next analyze the three compo-
nents in detail, starting with a simple numerical study. The first com-
ponent is label rebalancing. We examine the influence of the size of β on
the class-based weight, as shown in Equation (3). When β = 0, it corre-
sponds to no re-weighting, and as β approaches 1, it corresponds to re-
weighting by inverse class frequency. The proposed concept of the
effective number of samples enables us to use the hyperparameter β to
smoothly adjust the class-balanced term between no re-weighting and re-
weighting by inverse class frequency. In Fig. 6b, we demonstrate that the
class-balanced termalways improves the performance of the original loss,
and larger values of β yield more significant performance gains.

EffectivenessofPseudo-label calibration. In Section 3.3, we introduce
two steps to align the prediction distribution for unlabeled cases with the
ground truth distribution. Herein, we present the histogram distribution
of the ground truth labels, the predictions from the baseline FixMatch,
and our model ChemMatch in Fig. 7. It can be observed that FixMatch
has significantly fewer predictions for the minority class, while our
ChemMatch produces a prediction distribution similar to the
ground truth.

We also calculate the KL divergence53 between predictions and ground
truth labels. The KL loss between FixMatch and the labels is 0.0467, while it

is 0.0028 for ChemMatch. This indicates that the distribution of Pred2 is
closer to the target distribution compared to Pred1, as reflected by the lower
KL divergence value. This demonstrates that our techniques for pseudo-
label calibration are effective, and the predicted labels are of good quality,
closely resembling the ground truth labels. This provides a favorable con-
dition for semi-supervised learning.

Effectiveness of SoftMix operation. Apart from the numerical study,
we conduct visualizations to provide a more intuitive understanding of
the proposed structure. Firstly, we demonstrate the effectiveness of the
SoftMix operation through t-SNE projection. In Supplementary Fig. S1,
we project the original labeled text, the augmented text using back
translation, and the hidden vector obtained by the SoftMix operation,
respectively. It can be seen that the augmented text is close to the original
text, which means that the back translation operation brings limited
diversity to the training corpus. Then, for the gray nodes projected by the
hidden cases generated by the SoftMix operation, they are farther away
from both the original document and the augmentation in the input
space, and are more dispersed in the latent space. This indicates that the
SoftMix operation can generate more diverse and informative repre-
sentations compared with the input space augmentation, potentially
leading to improved model performance.

Fig. 5 | Error analysis. Supporting fact for the answer is highlighted.

Table 5 | Ablation study of ChemMatch

Model Setting 1 Setting 2 Setting 3 Setting 4

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

ChemMatch 71.36 68.55 73.12 70.84 73.84 70.93 74.28 71.06

w/o Label Rebalance 70.76 67.79 72.75 70.13 73.56 70.28 73.96 70.32

w/o Pseudo-label Calibration 70.43 66.84 72.18 69.02 72.78 68.90 73.27 69.02

w/o SoftMix 70.55 67.10 72.17 69.25 72.94 69.19 73.36 69.29

w/ RemixMatch 64.86 64.34 66.61 65.87 66.85 66.86 67.79 66.30

Numbers in bold denote significant improvements over the w/o Label Rebalance, as determined by a two-tailed paired t-test with a p-value < 0.05.
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Comparison with RemixMatch baseline. We also tried an alternative
remix operation proposed by Ref. 39. It introduces a remix operation in
latent space that combines multiple cases to create new learning inputs
and targets. This approach differs from our SoftMix operation, which
mixes informationwithin a single case whilemaintaining the same target.
As shown in Table 5, with the remixmatch component the model per-
forms poorly on textual tasks. This observation aligns with the previous
findings at: https://github.com/microsoft/Semi-supervised-learning/
blob/main/results/usb_nlp.csv. A plausible explanation is that, in the
text domain, the semantic vector representations cannot be mixed
similarly to the computer vision domain, which can cause confusion in
the training process and interfere with performance.

Comparison with PubMedQA baseline. PubMedQA is a model pro-
posed by PubMedQA19. One significant difference is that it focuses on the
biomedical domain, whereas the performance of language models in the
chemistry domain remains largely unexplored. In terms of data collec-
tion, our work encompasses papers from various sources such as Elsevier
and Springer, which are diverse and cover multiple topics. Regarding
model design, PubMedQA undergoes a multi-phase training process
using either ground truth labels or pseudo labels. In contrast, our model
follows an end-to-end approach, where it is trained simultaneously with
both labeled and pseudo labels.We also introduce amodule that includes

a softmix augmentation operation to more effectively utilize imbalanced
datasets, which significantly outperforms PubMedQA.

Conclusion and broader impacts
In this study, we introduce the a large-scale chemical question-answering
dataset, gathered from academic sources. Given the inherent imbalance of
the data attributes, we further present ChemMatch, a question-answering
model specifically adapted for imbalanced semi-supervised learning. This
model introduces label-rebalance and pseudo-calibration operations to
address the imbalance issue. Experimental results show that ChemMatch
surpasses recent classification baselines and LLMs. Our dataset holds the
potential for additional scientific investigation. For instance, it can be used
for testing domain-specific language models on their understanding of
complex chemical concepts. It can also examine chemical research infor-
mation retrieval systems, particularly in matching questions with corre-
sponding documents.

Data availability
The code and data sample is publicly available at https://github.com/iriscxy/
chemmatch. Our dataset is drawn from various academic platforms, each
having distinct data protection policies. A significant portion of our dataset
is sourced from the lens.org34 website, a platform that actively promotes the
distribution and sharing of data. As per the guidelines detailed at https://
about.lens.org/policies/#attribution, we are allowed to release the dataset
with the Lens ID. The extensive scale of 26,000 cases holds significant
potential and is expected to provide considerable benefits to the community.
As for data sourced fromother sites like Elsevier, whichmaintains strict data
usage policies at https://www.elsevier.com/about/policies/copyright/
permissions, we release the DOI of the files within our dataset alongside
our data collection code. This approach enables users to recollect our data
collection steps, but always within the constraints set by the original data
providers’ permissions.

Code availability
The code and data sample is publicly available at https://github.com/iriscxy/
chemmatch.
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