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Pulmonary artery-vein segmentation is critical for disease diagnosis and sur-
gical planning. Traditional methods rely on Computed Tomography Pulmon-
ary Angiography (CTPA), which requires contrast agents with potential health
risks. Non-contrast CT, a safer and more widely available approach, however,
has long been considered impossible for this task. Here we propose High-
abundant Pulmonary Artery-vein Segmentation (HiPaS), enabling accurate
segmentation across both non-contrast CT and CTPA at multiple resolutions.
HiPaS integrates spatial normalization with an iterative segmentation strategy,
leveraging lower-level vessel segmentations as priors for higher-level seg-
mentations. Trained on a multi-center dataset comprising 1073 CT volumes
with manual annotations, HiPaS achieves superior performance (dice score:
91.8%, sensitivity: 98.0%) and demonstrates non-inferiority on non-contrast CT
compared to CTPA. Furthermore, HiPaS enables large-scale analysis of 11,784
participants, revealing associations between vessel abundance and sex, age,
and diseases, under lung-volume control. HiPaS represents a promising, non-
invasive approach for clinical diagnostics and anatomical research.

Pulmonary and cardiovascular diseases can cause substantial
impairment to respiratory function and a substantially increased
workload on the cardiovascular'?, representing great threats to
human health and well-being globally®. Artery-vein segmentation is
critical for the diagnosis and treatment of lung diseases*’. It has
emerged as an important diagnostic indication for pulmonary and
cardiovascular diseases such as pulmonary embolisms and pul-
monary arterial hypertension (PAH), and serves as an indispensable
anatomical landmark guiding surgical interventions®. Beyond dis-
ease detection, pulmonary arteries and veins also play a critical role
in various medical image analysis tasks, including lesion

segmentation and image registration”®. Consequently, consider-
able endeavors have been devoted to attaining satisfactory artery-
vein segmentation. Initially, the Computer Tomography Pulmonary
Angiography (CTPA) technique™ reliant on contrast agents was
proposed and subsequently established as the standard approach
for artery-vein identification over a long period of time'. However,
the utilization of contrast agents and arterial cannulations during
CTPA can impose substantial metabolic loads on the kidneys and
trigger adverse health effects™. Furthermore, CTPA remains
unsuitable for pregnant women and individuals with an allergy to
contrast agents or severe kidney diseases'. As a result, an accurate
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and more universally applicable pulmonary artery-vein segmenta-
tion methodology is urgently needed for clinical applications.

Non-contrast computed tomography (CT) has emerged as a
widely utilized imaging modality across clinical practice given its
affordability and capacity to assist diagnosis®. Compared with CTPA,
non-contrast CT is faster and more applicable without risks of adverse
effects from the contrast agents'. While distinguishing pulmonary
arteries and veins from non-contrast CT is challenging even for
experienced radiologists, recent artificial intelligence (AI) progresses
have indicated feasibility in tackling such tasks” . However, previous
approaches show unsatisfactory segmentation accuracy for both ves-
sel trunks and intrapulmonary vessel branches?. This can be attributed
to the complex topological structures and low radiographic contrast’®.
Current segmentation methods fail to meet clinical necessities for the
disease diagnosis such as PAH or distal lesions'®*°, which depend on
accurate morphological representations of pulmonary arteries and
veins’??%, Alongside diagnostic needs, rising concerns over radiation
exposure have precipitated the utilization of low-dose, low-resolution
CT (LD-LRCT)****, However, such LD-LRCT can introduce substantial
image noise and the resolution decrease; the former will impede both
manual and automated identification of arteries and veins®?, while
the latter can lead to spatial anisotropy that will greatly degrade the 3D
segmentation performances®. Therefore, there is a pressing need to
develop a novel segmentation framework that can attain anatomically
precise and high-abundant segmentation results for pulmonary
arteries and veins from varied CT protocols, including non-contrast,
CTPA and LD-LRCT scanning.

In this study, we present a novel High-abundant Pulmonary artery-
vein Segmentation (HiPaS) framework to achieve rapid and precise
artery-vein segmentation results on both non-contrast chest CT and
CTPA across various spatial resolutions (Fig. 1). This enables contrast-
agent-free pulmonary diagnosis, allowing faster, lower-cost examina-
tion without the risk of adverse effects from the contrast agents. HiPaS
was first self-supervised pre-trained on public chest CT (n=17,817)
using a masked autoencoder strategy (Methods) and subsequently
trained and externally tested on our multi-center dataset comprising
1073 CT volumes (315 for CTPA and 758 for non-contrast CT) with
meticulous manual artery-vein annotation (875 for training and vali-
dation, and 198 for testing). Experiments confirmed the superiority of
HiPaS, outperforming other state-of-the-art (SOTA) methods by about
7% and 13% in dice similarity coefficient (DSC), and 15% and 20% in
sensitivity for normal and low-resolution CT, respectively. HiPaS also
demonstrated exceptional segmentation abundance, detecting about
40% more skeleton length and 100% more vessel branches compared
to state-of-the-art methods. We then evaluated HiPaS on external 14
paired CTPA and non-contrast CT (digital subtraction CT pulmonary
angiography, DSCTPA) (Methods)”, showing non-inferior perfor-
mance achieved by HiPaS on non-contrast CT compared to CTPA.

HiPaS achieving highly accurate and abundant segmentation
results enables non-invasive studies of pulmonary vasculature anat-
omy. Employing HiPaS, we conducted a large-population-based ana-
tomical study of pulmonary blood vessels (n=11,784, six sites) in
China, uncovering the associations between vessel abundance and
demographic characteristics including sex, age, and disease states.
While males show a generally higher vessel abundance, females can
exhibit a stronger association with vessel abundance when lung
volume is controlled. Vessel abundance also presents a slightly nega-
tive association with age, and is impacted by disease states as well. For
instance, cardiomegaly shows a positive association with vessel
abundance, whereas PAH and chronic obstructive pulmonary disease
(COPD) could suggest a negative one. HiPaS not only serves as a robust
automatic contrast-agent-free artery-vein segmentation tool for
streamlining clinical decisions and mitigating contrast agent hazards
but also showcases a new research avenue regarding pulmonary
anatomy in a non-invasive modality.

Results

HiPaS framework and datasets

Here we present HiPasS for rapid and precise artery-vein segmentation
on both non-contrast CT and CTPA (Fig. 1b). HiPaS incorporates a
novel Inter-and-Intra-slice Super Resolution (I12SR) module (Supple-
mentary Notes 1, 2, and Supplementary Fig. 5a), and a Saliency-
Transmission Segmentation (STS) module (Supplementary Note 1,
Supplementary Fig. 5b, c) that are specifically designed for this project
and jointly employed to produce accurate segmentation. To resolve
spatial anisotropy due to varying inter- and intra-resolution unbalance,
the I12SR modaule first reconstructs the original CT scans into a space
with normalized spatial resolution. Unlike traditional reconstruction
approaches, the 2SR module can mutually learn the representation of
inter-slice and intra-slice multi-scale features to improve the accuracy
and spatial consistency in the reconstruction process. We additionally
introduce an image enhancement block to increase the reconstruction
fidelity of vascular structures and robustness to image noise. In the
artery-vein segmentation process, to address previous limitations
related to long-range context correlation and diverse topological
structures, inspired by manual labeling, which progresses from low-
level to high-level vessels, we design an innovative cascading multi-
stage saliency-transmission segmentation strategy. Initially, the vas-
cular tree is divided into distinct levels of vessel branches (Methods),
and sequentially assign each branch level as the segmentation target
for each respective segmentation stage. The segmentation probability
map from lower-level vessels is used as a prior for higher-level vessel
segmentation by integrating the probability map with the CT volumes
as the input for subsequent networks. This approach allows us to
progressively achieve accurate segmentation results.

Given the difficulties in identifying arteries and veins from non-
contrast CT scans, precise manual annotation is laborious, expensive,
and challenging'®. It demands substantial endeavor expendable only
by expert radiologists, with an estimated annotation time of 4 to 5h
per case. To our knowledge, no publicly available large-scale dataset
currently exists about whole pulmonary artery-vein segmentation for
both non-contrast CT and CTPA modalities. Here we establish a multi-
center CT dataset with high-abundant pulmonary artery-vein annota-
tions (Table 1), which includes almost all the visible arteries and veins
on the chest CT. The CT volumes employed in this study were obtained
from three different sites and were acquired from September 2018 to
August 2023. A selected group of experienced thoracic radiologists
first undertook manual annotation of the arteries and veins for the
CTPA subset (n=315). Our algorithm was first trained and validated
utilizing these annotated CTPA to get an initial model (Methods).
Subsequently, the initially trained model was transferred and deployed
on the remaining larger corpus of non-contrast CT (n = 758) (the model
transferring is described in the Methods section) to generate initial
segmentation results. The radiologists then reviewed and corrected
these initial results to obtain the final high-abundant artery-vein seg-
mentation for a total of 1073 CT volumes (about half an hour on
average for one case labeling) (Fig. 1d, Supplementary Fig. 8).

A multi-step training strategy was implemented to optimize
HiPaS. Pre-training on extensive public chest CT (n=17,817) with the
masked auto-encoder approach (Methods) was initially employed to
increase the generalizability of HiPaS to real-world data. Subsequently,
to improve the anatomical perception ability of HiPaS for arteries and
veins, HiPaS was first trained on CTPA scans, followed by fine-tuning on
non-contrast CT scans (Fig. 1a) using the Harbin and Mudanjiang
cohort (Table 1). HiPaS testing was performed on the external
Guangzhou cohort (n =198). Quantitative evaluation of HiPaS included
several indices: dice similarity coefficient (DSC) for whole arteries and
veins, as well as for intrapulmonary arteries and veins, respectively;
sensitivity, 1 - specify (false positive ratio), artery-vein misclassification
(MCS) ratio; detected proportion of branch counts (BC) and vessel
skeleton length (SL)’%; and 95% Hausdorff Distance (HD95)*
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Fig. 1| lllustration of the overall study design. a Schematic plot for developing
and evaluating HiPaS. HiPasS is designed for whole pulmonary artery-vein seg-
mentation on both non-contrast CT and CTPA. Initially, HiPaS was pretrained using
17,817 public CT volumes and subsequently trained on 875 CT volumes, comprising
315 CTPA and 560 non-contrast CT. We utilized 198 external CT volumes for model
testing. HiPaS was finally deployed on a clinical cohort of 11,784 patients for ana-
tomical studies. b Overall framework of artery-vein segmentation with HiPaS. The
HiPaS framework begins with the Inter-and-Intra Slice Super-Resolution (I2SR)
module, which resamples CT scans into a normalized space. Following this, the
Saliency-Transmission Segmentation (STS) module is used to achieve precise

5,740 patients
from Harbin

1,782 patients
from Mudanjiang

1,078 patients
from Beijing

1,171 patients
from Nanjing

1,231 patients
from Shanghai

782 patients
from Guangzhou

—

artery-vein segmentation. ¢ General structures of the 12SR module and the STS
module. d Data annotation process. We employed a human-in-the-loop strategy for
data annotation. Initially, annotations were created for CTPA. HiPaS was trained on
these annotations and then deployed on non-contrast CT to generate initial artery-
vein segmentation results. Radiologists then reviewed and revised these results to
obtain the final segmentation annotations. e Datasets for pulmonary anatomical
study. We collected 11,784 CT volumes from six different cities in China as a multi-
center study. Some of the designs in the figure use materials from Freepik https://
www.Freepik.com.

(Supplementary Table 5). Details regarding the implementation of
evaluation indices are described in the Methods section.

Performance evaluation on external dataset

We present both quantitative (Fig. 2a-h, Supplementary Data Table 5)
and qualitative (Fig. 2i, j, Supplementary Fig. 7) results of HiPaS on the
non-contrast CT segmentation against state-of-the-art methods. The
compared approaches include the 3D UNet*’, nnUNet*, and the algo-
rithms introduced by Pan et al.” and Qin et al'®, and the semi-
automatic (Semi-auto) achieved by radiologists (Methods). All seg-
mentation approaches except the semi-automatic segmentation
underwent initial training and optimization on the same training
datasets, followed by testing on the same external Guangzhou cohort.

The testing cohort was further separated into two sets according to the
spatial resolution and scanning doses: the first set (n =142) contained
CT images acquired under normal-dose (scanning voltage > 120 kV)
and normal resolution (inter-slice thickness = 1.00 mm) CT scans
(NRCT), while the second set (n=56) contained relatively lower-dose
(scanning voltage = 100 kV) and lower-resolution (inter-slice thickness
> 1.25mm) CT scans (LRCT). To ensure unbiased assessment, testing
cases were strictly excluded from all training and fine-tuning
procedures.

Our method achieves the best performance under most metrics
(Supplementary Table 5, first table) on the NRCT set, with a mean DSC
of 92.25% (95% Cl 92.12%-92.38%)/89.09% (95% Cl 88.91%-89.27%) (the
results here and below are presented in artery/vein terms,
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Table 1| Detailed information of datasets for model establishing and anatomical study

Data source Number Protocol Age (y) Male/ Vendor Utilization
Female (%)
Public chest CT dataset (n=17,817) RAD chest dataset 13,000 Model pretraining
RSNA PE CT dataset 4817 Model pretraining
Established dataset with annota- Harbin 315 CTPA 543+79 37.1/62.9 SIEMENS Model training
Hoe (n=are) Harbin 343 NCCT 539:7.6 51.9/481 SIEMENS Model training
Mudanjiang 217 NCCT 56.5+72 49.6/50.4 SIEMENS Model training
Guangzhou 198 NCCT 60.0£9.3 36.0/64.0 Philips, GE Model testing
Clinical association cohort (n=11,784) Harbin 5740 CTPA&NCCT 51.8+6.1 41.4/58.6 SIEMENS, UIH Anatomical study
Mudanjiang 1782 NCCT 52.7+5.8 55.1/44.9 SIEMENS, Philips  Anatomical study
Guangzhou 782 CTPA&NCCT 57.9+8.6 34.4/65.6 Philips, GE Anatomical study
Beijing 1078 CTPA&NCCT 54.3+7.9 47.4/52.6 SIEMENS Anatomical study
Shanghai 1231 CTPA&NCCT 51.3+95 46.2/53.8 TOSHIBA, UHI Anatomical study
Nanjing n7n CTPA&NCCT 51.6+11.4 625/375 Philips, UIH Anatomical study

“NCCT” non-contrast CT. Patient age is summarized as mean + std.

respectively) (Fig. 2c), and the area under curve (AUC) score is 99.93%/
99.91% (Fig. 2a). Compared to other methods, our approach achieves
significantly higher accuracy and sensitivity (p<0.0001) and can
detect much more vessel skeleton lengths and branches (Fig. 1.e, f).
Specifically, compared to best available SOTA method, HiPaS can
detect about 25%/56% relatively more skeleton length and 86%/130%
relatively more vessel branches, with a detected ratio of 95.20% (95% CI
91.35%-99.05%)/95.11% (95% Cl 91.26%-98.95%) for vessel skeleton
length and 94.28% (95% Cl 91.04%-97.53%)/95.21% (95% Cl 91.65%-
98.76%) for branches (Fig. 2.e, f). These results collectively demon-
strate that our segmentation results are very close to the ground truth,
which can reflect the realistic anatomical structures.

In terms of robustness, HiPaS is validated on LRCT scans (Sup-
plementary Data Table 5, second table). Remarkably, our technique
yields superior performance even under the challenging condition,
attaining a mean DSC of 89.51% (95% CI 88.79%-90.23%)/88.34% (95% Cl
87.49%-89.19%) (Fig. 1.d), which is comparable to the segmentation
performance on normal-resolution CT scans (p = 0.103). Compared to
other methods, our approach exhibits significantly better results
(p<0.0001) and can detect the most vessel branches, where the AUC
score is 99.82%/99.74% (Fig. 2.b), the sensitivity reaches a score of
97.24% (95% Cl 97.10%-97.38%). Compared to the best available state-
of-the-art method, HiPaS can detect about 40%/42% relatively more
skeleton length and 106%/160% relatively more vessel branches, with a
detected ratio of 96.39% (95% CI 93.40-99.39%)/95.06% (95% CI
91.79-98.33%) for vessel skeleton length and 93.51% (95% CI 89.88%-
97.14%)/95.36% (95% Cl 90.92%-99.80%) for branches (Fig. 2.g, h). This
proves the robustness of HiPaS for low-resolution scanning, suggest-
ing the potential applicability in scenarios where scanning condition is
sub-optimal.

Performance comparison between non-contrast CT and CTPA

To rigorously compare the segmentation performance of HiPaS on
non-contrast CT versus CTPA, the clinical gold standard, we con-
ducted a quantitative analysis of the segmentation results from
paired and aligned non-contrast CT and CTPA scans. These scans
were obtained from digital subtraction CTPA (DSCTPA)* per-
formed on external fourteen patients (Methods). Radiologists
manually annotated arteries and veins on CTPA and non-contrast
CT scans. Several metrics were calculated to evaluate the perfor-
mance and the differences in segmentation results generated by
HiPaS on non-contrast CT versus CTPA: the DSC between the seg-
mentation results achieved by HiPaS and the manual annotations on
non-contrast CT, the DSC between the segmentation results
achieved by HiPaS and the manual annotations on CTPA, and the

DSC between the segmentation results on non-contrast CT and
CTPA achieved by HiPaS, respectively.

Qualitative and quantitative results are presented in Fig. 3a,b.
Experiments demonstrate that the segmentation results of arteries and
veins on non-contrast CT and CTPA are highly consistent. The seg-
mentation from non-contrast CT and CTPA achieves an average DSC of
89.95% (95% Cl: 89.28-90.63%) and 90.24% (95% Cl: 89.62-90.86%),
and their performances are comparable (p = 0.633). The segmentation
results on non-contrast CT and CTPA also achieve high similarity and
consistency, with an average DSC of 88.98% (95% CI: 88.47-89.48%).
The experiment indicates the potential of HiPaS with non-contrast CT
to serve as a viable alternative to CTPA in segmenting arteries
and veins.

Prospective clinical utility

To assess the clinical value of HiPaS, we invited three radiologists from
three leading institutions in China (the First Affiliated Hospital of
Harbin Medical University, the Fourth Affiliated Hospital of Harbin
Medical University, and Guangdong Provincial People’s Hospital) to
conduct a prospective evaluation. The study included 50 representa-
tive cases from routine clinical practice (Supplementary Table 6). The
evaluation was conducted across three objective indicators: accuracy
and robustness, branch abundance, and assistance for diagnosis
(Supplementary Table 7). A 5-point scale was utilized for scoring, with
manual annotation serving as the referenced gold standard. A 5 score
indicates excellent segmentation with high consistency with the gold
standard, and O indicates unacceptable. For each case, we presented
the segmentation results achieved by nnUNet, semi-automatic seg-
mentation, and HiPaS to all the radiologists in a blinded fashion to
enable unbiased comparative analyses. Figure 3c presents statistical
results from the evaluation. HiPaS demonstrates superior performance
across all indicators for all participating radiologists compared to
nnUNet and semi-automatic segmentation. Our proposed method
achieves the highest accuracy and better facilitates diagnostic tasks as
evidenced by the evaluation scores. These results highlight the clinical
value of HiPaS.

HiPaS enables vasculature anatomical study in large cohorts

HiPaS achieving sufficiently high-abundant and accurate segmentation
results enables a systematic investigation of the anatomy of pulmonary
blood vessels. Although the physiology and anatomy of the respiratory
system have been studied, quantitative assessment of pulmonary
vessels across sex, age, and diseases, to our knowledge, has not been
reported. Here we conducted a substantial, multi-center anatomical
study on a large-scale CT dataset comprising 11,784 participants from
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Fig. 2 | External testing on the non-contrast CT of the Guangzhou cohort.
Receiver operating characteristic (ROC) curves of pulmonary arteries and veins on
normal-resolution CT (NRCT) (a) and low-resolution CT (LRCT) (b). We zoom in on
the ROC curve near the top left corner for better visualization. ¢, d Performance
comparison with existing methods in terms of dice similarity coefficient (DSC) for
whole arteries and veins, as well as intrapulmonary arteries and veins on both NRCT
(n=142) and LRCT (n =56). The error bars here and below indicate 95% Confidence
Interval (CI), and the center for the error bars indicates average values. e, f Com-
parison with existing methods in terms of detected proportion of skeleton length

Qin et al.
DSC=83.1%

Semi-auto
DSC=81.4%

DSC=76.2%

and branch counts for arteries and veins on NRCT (n =142). g, h Comparison with
existing methods in terms of the detected ratio of skeleton length and branch
counts for arteries and veins on LRCT (n=56). The CT scans and illustrations
merged with artery-vein segmentation. Arteries are marked with blue color and
veins are marked with red. We also show the 3D rendering of the arteries (first row)
and veins (second row) segmentation results on NRCT (i) and LRCT (j) achieved by
different methods. HiPaS can achieve more consistent results with ground truth
with more abundant vessel branches. Source data are provided as a Source Data file.
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Fig. 3 | Segmentation comparison against CTPA, and clinical evaluation

for HiPaS. a Comparison of artery-vein segmentation on paired non-contrast CT
and CTPA achieved from DSCTPA. HiPaS can identify arteries and veins directly
from non-contrast CT, whose performance is non-inferior to the segmentation on
CTPA. b Quantitative comparison of segmentation results between non-contrast
CT and paired CTPA from the same patient. Dice similarity coefficient (DSC) is
calculated in three scenarios: (1) between segmentation on non-contrast CT and
the corresponding annotations; (2) between segmentation on CTPA and the
corresponding annotations; and (3) between segmentation from non-contrast CT
and CTPA. c Clinical evaluation of HiPaS. Three radiologists from distinct

hospitals independently assessed the segmentation results derived from the
three methods, nnUNet, semi-automatic segmentation, and HiPaS. The specific
method corresponding to the segmentation results remained undisclosed to the
radiologists, ensuring unbiased evaluations. The assessment encompassed three
key indicators: segmentation accuracy and robustness, vessel branch abun-
dances, and diagnostic assistance (n =50). Error bars show the standard error of
mean (SEM) and the center for the error bars indicates average values. One-side
Mann-Whitney U tests were done between each method. P-values are specified as
#p < 0.05, #xp < 0.01, #xxp < 0.001, +*+xp < 0.0001, NS, not significant. Source
data are provided as a Source Data file.
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six representative sites in China (Harbin, Mudanjiang, Guangzhou,
Beijing, Shanghai, and Nanjing) (Fig. 1e, Table 1, Supplementary Fig. 9).
To ensure standardized analysis, all CT volumes were resampled into
the normalized space (Methods), after which HiPaS was implemented
to obtain the artery-vein segmentation of these volumes. Quantifica-
tion of pulmonary vascular abundance was evaluated using four sta-
tistical indices: skeleton length of pulmonary artery (SLPA), skeleton
length of pulmonary vein (SLPV), branch count of pulmonary artery
(BCPA), and branch count of pulmonary vein (BCPV), which were cal-
culated from the segmentation results. Quantitative comparisons and
statistical analyses of the association between pulmonary vessel
abundance and lung volumes, sex, age, and diseases were carried out
utilizing these four defined indices. Here lung volume served as the
control for the correlation study, defined as the volume of segmented
lung regions on CT scans (Methods)*. Sex was coded as a binary
variable (male = 1, female = 0) for the correlation calculations. We
included six common pulmonary and cardiovascular diseases (cardi-
omegaly, artery wall calcification, PAH, pulmonary nodule, pulmonary
embolism, and COPD) (Fig. 4d). We also performed binary-encoding
for each disease state respectively (with disease = 1, without disease =
0). The statistical results for the whole dataset are presented in Fig. 4
and Supplementary Table 8, and the results for the 1073 CT volumes
with manual annotations are presented in Supplementary Fig. 10 and
Supplementary Table 9 as a reference.

Regarding the entire study population, pulmonary vessel abun-
dance exhibited a strong correlation with lung volume for both males
and females (p<0.0001). Males have significantly longer vessel-
skeleton lengths (13985 +2794/12257 +2407 for males and
10977 £ 2407/9871 £ 1916 for females, respectively) (p <0.0001) and
more vessel branches (1862 + 472/1805 + 462 for males and 1552 + 470/
1468 + 430 for females) (p < 0.0001) (Fig. 4a), while females exhibited a
larger regression coefficient of skeleton length and branch counts with
lung volume compared to males (3368 +45/2652 + 36 of vessel skele-
ton length cm per liter for females and 3004 + 50/2222 + 34 cm per
liter for males, and 485+10/437 +10 of branch counts per liter for
females and 362+10/397+9 per liter for males, respectively;
p <0.0001) (the correlation coefficient for sex is -838 + 55/-565 + 40 for
vessel skeleton length and —195 +12/-160 + 11 for branch counts, when
encoding male as 1 and female as 0). These results indicated that given
the same lung volume, females could exhibit greater vessel abun-
dance, including longer vessel skeleton length and more branch
counts, compared to males. Pulmonary vessel abundance also exhib-
ited strong correlations with age in both males and females (Fig. 4b,
and Supplementary Table 8). As age increases, pulmonary vessel
abundance, as quantified by all four indices, showed a slightly declin-
ing trend (p <0.0001). Benefiting from HiPaS, aging effects on the
vascular system®¢ are proven in radiomics.

Pulmonary vessel anatomy also demonstrates significant asso-
ciations with certain diseases (Fig. 4e, f). For instance, cardiomegaly
and artery wall calcification shows a positive correlation with overall
vessel abundance (172 + 58/150 + 42 for skeleton length, and 38 +12/
28 +11 for branch counts) and artery abundance (106 + 53 for artery
skeleton length), respectively. PAH is associated with a significant
decrease in artery abundance (-192+96 for skeleton length and
-43 +20 for branch counts), while COPD negatively correlates with
vein abundance (=170 + 74 for vein skeleton length and —42 + 20 for
branch counts). This negative association implies that these two dis-
eases might contribute to the remodeling and removal of distal pul-
monary vessels®”%, Furthermore, diseases such as pulmonary nodules
and pulmonary embolism exhibit less significant associations with
vessel abundance, indicating they may not solely substantially affect
the anatomy of distal vessels. HiPaS facilitates quantitative monitoring
of the changes in pulmonary vasculature anatomy via non-contrast CT,
which can help in understanding the disease’s influence on blood
vessels. Many studies also demonstrate that these changes can prove

valuable for treatment monitoring, prognosis, and therapeutic strate-
gies targeting pulmonary and cardiovascular diseases®’**,

Discussion

In this work, we have proposed an innovative framework, HiPaS,
designed for the highly accurate and abundant segmentation of pul-
monary arteries and veins in both non-contrast CT and CTPA. Pul-
monary artery-vein segmentation is crucial for clinical diagnosis and
surgical planning, but has traditionally relied on CTPA in clinical
practice. Due to the low image contrast and complex vascular struc-
tures, directly segmenting arteries and veins from non-contrast CT has
long been considered infeasible by radiologists and computer-aided
diagnosis (CAD) systems. Here we present the feasibility of using HiPaS
to segment arteries and veins directly on non-contrast CT, with non-
inferiority than segmentation on CTPA. Extensive experiments on
external datasets have demonstrated the superior performance of our
framework, achieving sufficiently high-abundant and accurate seg-
mentation results, and enabling systematic investigation of the ana-
tomical study of pulmonary blood vessels. By facilitating accurate
clinical segmentation without contrast-agent utilization, HiPaS facil-
itates rapid, accurate, and non-invasive pulmonary disease diagnosis
and surgical planning.

The success of HiPaS can be attributed to our framework design
and training strategy. The introduction of the I2SR module
addresses potential blurring and spatial anisotropy due to low-
resolution scanning, while the enhancement block provides robust
priors to aid segmentation in noisy data. Inspired by the manual
labeling process, we propose the STS module, which progressively
achieves the whole pulmonary segmentation by utilizing lower-level
vessel segmentation as a priori for higher-level segmentation. This
improves the anatomical perception of the network, enabling it to
model long-range vascular correlations and morphological differ-
ences between vessel trunks and intrapulmonary branches. Fur-
thermore, transfer learning from CTPA to non-contrast CT allows
the network to learn morphologies of arteries and veins, facilitating
identification and segmentation in low-contrast non-contrast CTs.
Additionally, our human-in-the-loop strategy greatly reduces man-
ual annotation efforts, (from about four hours per case with fully
manual annotation, to about half an hour with the help of human-in-
the-loop), allowing us to efficiently obtain large-scale, meticulously
labeled datasets. This enables large data-driven training of our
models to achieve optimal performances.

Furthermore, our research represents an initial step toward
understanding the influence of demographic characteristics, including
sex, age, and diseases, on pulmonary vessel anatomy. While previous
studies report sex differences in pulmonary anatomy, such as larger
lung volumes and airway sizes in males compared to females”, similar
studies on vascular differences between sexes are notably lacking. Our
anatomical studies can provide some inspiration for this problem.
Moreover, our findings on sex differences in pulmonary blood vessels
may help understand the disparities in disease occurrence and treat-
ment, which may aid in the development of more personalized diag-
nostic and therapeutic strategies. Many studies have reported sex
differences in disease incidence and treatment for conditions like
pulmonary embolism, hypertension, and lung cancer*?*¢, For example,
females have a higher PAH incidence compared to same-age males*.
We hope our findings can help provide a perspective to understand
such differences. Additionally, both our clinical experience and pre-
vious research have reported that females may experience a higher
likelihood of hemorrhage during lung surgery and pulmonary trans-
thoracic biopsy compared to males*, potentially due to a higher pul-
monary vessel density in females. This also underscores the
significance of more detailed surgical planning with HiPaS for females
to potentially reduce intraoperative hemorrhage. We hope our find-
ings can help understand these sex differences, contributing to the
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Fig. 4 | Association of vessel abundance with sex and age on 11,784 partici-
pants. We include four indices, skeleton length of pulmonary artery (SLPA), ske-
leton length of pulmonary vein (SLPV), branch count of pulmonary artery (BCPA),
and branch count of pulmonary vein (BCPV) to represent the blood vessel abun-
dance, and used the lung volume as the controlling. a Boxplot of the distribution of
four indices between males and females (n =11,784). The box plot displays data
distribution where the box bounds (Ql and Q3) represent the 25th and 75th per-
centiles, and the center line indicates the median (50th percentile). The whiskers
extend to the minima and maxima, defined as the smallest and largest values within
1.5 times the interquartile range. Two-sided Wilcoxon Signed Ranked tests are done
between males and females. P-values are specified as xp < 0.05, =xp < 0.01,
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swkp < 0.001, ##xxp < 0.0001, NS, not significant. b Pulmonary vessel abundance
across different ages. Error bars show the standard error of mean (SEM) (n =11,784).
¢ Association and linear regression of vessel abundance compartments with lung
volume. d Numbers of confirmed disease states for the involved participants. “PAH”
= pulmonary artery hypertension, “COPD” = chronic obstructive pulmonary dis-
ease. e, f Association between vessel abundance. ((e) for skeleton length and (f) for
branch counts) compartments with disease states. Values of the regression coef-
ficients are indicated by colors. The P-values are derived from multiple linear
regression analysis, indicating the statistical significance of each independent
variable. P values are specified for each item. Source data are provided as a Source
Data file.

establishment of more targeted, sex-differentiated disease prevention
and treatment strategies in clinical practice.

HiPaS also facilitates the observation of disease impact on
pulmonary blood vessels using non-contrast CT. Many diseases
can cause pulmonary vascular remodeling and change vessel
abundance. For example, our study identifies that cardiomegaly
and artery wall calcification can show a positive correlation with
overall vessel abundance. Cardiomegaly can compress lung
volume*®, thus increasing overall vessel density. Meanwhile, car-
diomegaly is also strongly linked to declining cardiac function,

with increased vessel density potentially serving as a compensa-
tory response*®. Calcification, besides being compensatory, also
enhances radiological signals*® and thus maybe increases their
visibility on CT scans. We also find that PAH and COPD can reduce
vessel abundance when lung volumes are controlled, which can
be attributed to the small vessel atrophy and removal caused by
these two diseases®**. Quantitative assessment of these changes
is crucial for understanding disease extent and severity. For
instance, the loss of pulmonary vessels has been shown to be
related to the severity of PAH in patients with COPD**. Some
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studies also suggest vessel alterations can precede alveolar
destruction, indicating that monitoring pulmonary vessels may
provide early insights into COPD progression®**°. This vessel
assessment also has significant prognostic value. For instance,
reduced small vessel volumes in PAH are correlated with worse
survival, which can aid risk stratification and management®.
Traditionally, such quantitative identifications are performed
using gadolinium-enhanced MRI or CTPA*"%. HiPaS, however,
offers a cost-effective and more adaptable alternative. We
anticipate that HiPaS-guided artery-vein segmentation will sig-
nificantly influence future clinical practices.

There remain opportunities to further improve HiPaS in the
future. Although HiPaS is trained and tested on a multi-center
dataset, it currently only includes Chinese hospital CT scans. Due
to data limitations, scans with clinical information from other
countries or continents were unavailable in our study. Validating
the performance of the model and anatomical studies on more
geographically diverse international cohorts is our future goal.
The anatomical study also faces some limitations. While HiPaS
can accurately identify small distal pulmonary vessels, it only
detects visible vessels in CT and cannot distinguish vessel walls or
blood flow. For instance, blood vessel wall thickening is a sign of
vascular degeneration®, but HiPaS cannot identify such changes.
More precise techniques, like microscopy, are required to assess
these conditions. Additionally, the anatomical study is con-
strained by CT resolution, which will exclude vessels with dia-
meters below the resolution limit. Super-resolution with deep-
learning methods cannot overcome this physical limitation. With
advancements in CT scanning technology, we will conduct a
second confirmation of our anatomical studies to prove its
efficiency.

HiPaS demonstrates the promising potential of using widely
available, low-cost, low-risk non-contrast CT for accurate artery-vein
segmentation. We hope that HiPaS will assist radiologists with disease
diagnosis and surgical planning, while also catalyzing a transformation
in clinical artery-vein segmentation from contrast-enhanced CTPA to
more convenient non-contrast approaches.

Methods

Problem formalization

Let X e R“*¢*" pe the input CT scans. Our goal is to computationally
achieve the artery-vein segmentation results P

P= Seganery—vein (X) (1)

Here we propose an integrative workflow to divide the problem
into two-mappings: spatial normalization F : X — Y and segmentation
G:Y — P. Here Y is the resampled CT scan, ¥ € R">*2*# with the
normalized spatial resolution 2} x 3 x1.00mm?. This spatial reso-
lution is sufficiently high to preserve information in most cases and
ensures that the resampled space is large enough to fully accom-
modate most human lungs. Then the entire process can be denoted as

wadxh*)FyWXDXH*)CPWXDXH (2)

The overview workflow is shown in Fig. 1c. In the inference phase,
we first resample the raw input CT to the normalized space using
trilinear interpolation. For inter-slice thicknesses greater than 2 mm,
we apply I12SR for inter-slice super-resolution instead. STS segmenta-
tion is then performed on the resampled normalized data. The pre-
dicted segmentations will be resampled back to the original input
resolution to compare our segmentation results and the ground truth
labeled on raw resolution space.

Model pretraining with masked autoencoder

Self-supervised pre-training on large datasets has demonstrated
improved model generalizability and downstream task performance.
Here we implement masked autoencoder (MAE), a highly effective pre-
training approach®’, on our proposed artery-vein segmentation net-
work with sparse convolution®>. We mask parts of the input data and
then guide the network to learn effective representation by training to
predict the masked parts. The sparse convolutional is employed in the
encoder to avoid the distribution shift due to irregular image masks™.
We employ identical hyper-parameter values for mask patch size
(32 x32 % 32) and masking ratio (60%) as proposed in ref. 53, alongside
an L2 objective function to optimize the difference between the
reconstructed input and the original unmasked input. We utilize the
public chest CT released in ref. 54 (n=13,000) and* (n=4817) (17,817
in total) as the pretraining dataset. When transferring to artery-vein
segmentation, we fix the encoder parameters of the pretrained model
and solely optimize the decoder.

CT spatial-normalization with 2SR module
In this section, we describe the structures of our proposed I2SR (Fig. 1c,
left, and Supplementary Fig. 5a), as a pre-processing step for the
subsequent segmentation module. Unlike previous CT super-
resolution techniques that treat CT as two-dimensional images or
three-dimensional volumes, I2SR fully leverages the context of CT sli-
ces and treats CT volumes as a sequence of two-dimensional slices with
position information encoded. This approach not only improves the
accuracy of the intra-slice reconstruction results but also maintains the
consistency and continuity of inter-slice information.

12SR mainly consists of four parts: feature extraction (FE) block,
feature interpolation (FI) block, inter- and intra-feature fusion (I2FF)
modules, and final high-resolution reconstruction (RE) block. Given
two contiguous CT slices in the low-resolution CT scan, denoted as
slicel and slicel], our first step involves utilizing the feature extraction
block to encode the input slices into the latent representations. This
block architecture consists of residual-connected convolutional
layers™, outputting embedding features of identical dimensions to the
input volumes,

(L1, Ly) = FE (slice], slice} 3)

Here L; and L, are the latent representations of input slices. We
then perform feature interpolation with the FI block, upsampling these
latent representations to the target resolution and spatial dimensions,
yielding an initialized temporary HR representation (H;, ---, H,,).

(Hy, -+, H,)=FL(L;, L,) “4)

While the initial HR representations provide a preliminary
reconstruction, further optimization is imperative to enhance result
fidelity through simultaneous inter-slice and intra-slice contextual
learning. We achieve this via iterative interactive I2FF modules, as
illustrated in Supplementary Fig. 5a. Each I2FF component comprises
parallel 3D convolutional layers with kernel sizes of k; xk; x1 and
1x1xk, designed to integrate information across both the spatial and
depth dimensions, respectively. The output of two convolutional lay-
ers will be concatenated along the channel dimension. We additionally
employ two cascaded 3D convolution layers with 3x3x3 and 1x1x1
kernels to further fusion features between channels. Layer normal-
ization and ReLU activation functions are also implemented through-
out for improved conditioning and non-linearity. The I2FF blocks are
iteratively operated on the HR representations to perform feature
fusion, and the final HR representations are sent into the RE block to
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achieve the final results.
(slicet®, -- -, slice’™) = RE o (12FF) (Hy, - -+, H,). Q)

Here (slice®, ---,slicelf) denote the final HR reconstruction
results, and [ is the iterative numbers. Supplementary Note 1, Note 2,
and Supplementary Fig. 5 provide specific network architectures and
training strategies employed in our experimental setting. To enhance
anatomical fidelity and spatial consistency, we optimize the recon-
structed images in both the image domain and vascular-structural
space via our image enhancement training strategy described as
follows.

Image enhancement and objective function for 2SR

We propose a novel technique integrating image enhancement to
improve the reconstruction fidelity of vascular anatomy. The Frangi
filter*’ is utilized to extract the edges and vascular structures from the
CT scan (Supplementary Fig. 6a), and our object is to keep these
extracted features consistent before and after reconstruction, ensur-
ing accurate vascular reconstruction via the I2SR module. Denoting the
Frangi filter operator as O,(-), the objective function can be formulated
as

gpvessel — [10F (slicere) —Of (Slicegt)||2~ 6)

Here slice?" is the referenced high-resolution CTs. However, the
Frangi filter includes high-order complex operations including Hessian
eigenvalue calculation, making back-propagation difficult in the
training process™. In our practice, we develop a convolution-based
operator comprising multiple lightweight 3 x3 convolutional layers
that simulate the performance of the Frangi filter and facilitate gra-
dients during training. This compact convolutional network is opti-
mized with raw images as input and filtered outputs as the target*.

Additionally, we incorporate a noise-augmentation training
strategy to reduce noise for low-dose CT and improve the robustness
of HiPaS to CT noise. Specifically, we add simulated noise onto the low-
resolution CT slices to get the noisy slices noiseo slice’” (Supplemen-
tary Fig. 6b), expecting I2SR to recover the raw CT slices from these
noisy inputs. The simulated noise follows the Poisson decay law*”. The
total objective function for I2SR is thus formulated as

2125 — | slice™ — slice®|” + |05 (slice™) — O (sliceg‘)l\z, )

where

slice™ = I2SR(noise o slice). 8)

Artery-vein segmentation with saliency-transmission
segmentation module

Current algorithms for pulmonary artery-vein segmentation are largely
hindered by three primary factors”: the substantial morphological
disparities between extra- and intra-pulmonary blood vessels, the
limited representation of intra-pulmonary vessels in the input CT scan,
and the long-range context correlation to distinguish arteries and
veins. Due to the difficulty in simultaneously learning and distin-
guishing the distinct morphological features of the extra- and intra-
pulmonary blood vessels, a single segmentation model may be insuf-
ficient in achieving satisfactory segmentation results. The complex
morphology of blood vessels can also exacerbate topology issues,
leading to problems such as omission and discontinuity of segmen-
tation results. Additionally, local information alone is often insufficient
to distinguish between arteries and veins, which requires long-range
contextual information instead, even from the hilum. Otherwise,

misclassification will easily exist for intrapulmonary artery-vein
segmentation.

In response, we have developed a novel Saliency-Transmission
Segmentation (STS) module that effectively addresses all of the
aforementioned concerns (Fig. 1c, right). The module design is
inspired by the manual segmentation process, in which experts first
identify the low-level arteries and veins, and then infer higher-level
vessels based on spatial continuity, topological structure, and phy-
siological information. Following such an idea, we implement a deep
learning approach that conducts segmentation in a hierarchical man-
ner, with lower-level results providing contextual priors to guide
higher-level segmentation. This aligns with the step-wise process of
manual labeling. Meanwhile, the network in each stage can better
focus on specific vessel topology instead of simultaneously handling
vessels with various topologies. Specifically, the module contains an
innovative prior-map transmission block that passes probability maps
between layers based on preliminary vessel delineation (Supplemen-
tary Fig. 5b). This transmission block converts the segmentation
probability map of the lower-level vessel branches from the previous
networks into spatial weights, which are then applied to the next
segmentation.

We first divide the arteries and veins of the annotations into four
levels, denoted as

[AO, VO}, [Al, vl], [AZ, v2], [A3, vﬂ . )

Here A is the artery annotations and V is the vein annotations.
[A°, V0] represents the cardinal arteries and veins inside the heart;
[A%, V1] includes the arteries and veins located as the hilum with 1 or 2
levels of vessel branches; [42, V3] includes the arteries and veins with 3
to 5 levels of vessel branches, and [43, V3] includes all the left visible
vessels inside the lung. Supplementary Fig. 6c provides two examples
of the divide of the arteries and veins. The branch levels are obtained
by first extracting the vessel skeleton®®, and then transforming the
skeleton into a vessel tree®.

Without loss of generality, we consider a resampled CT scan Y as
the input, and the goal is to achieve a binary segmentation mask with
the same dimensionality. For the artery-vein segmentation of the i-th
level [A%, V] (i>1), assuming that we have obtained the possibility map
of the i — 1 level segmentation as [P}, P}, the prior-map transmis-
sion will incorporate the possibility map with the input CT scans to
generate an updated input data, denoted as

A~ _ i1 i1
y_yeacT(Pg P ) (10)

Here Cy is a size-preserved convolution and & represents the
concatenation operation along the channel dimension. In practice, we
use two layers of 3 x 3 x 3 convolutional layers with residual connection
as Cr. Then the segmentation process becomes:

[P, Pi1=Si(V 6 a1
6 is the weight for the segmentation network S, and the network
architecture is shown in Supplementary Fig. 5c and d. For the first-level
segmentation [A%, V°|, its previous segmentation map will be
replaced by the all-zero matrix. To further enhance the segmentation
performance, we replace the input Y with a concatenated repre-
sentation of the CT scan and its refined vascular features, a process
discussed earlier,
Y & Op(Y) > Y. 12)
Based on branch-level labeling, we design a weighted dice-loss
which can automatically balance weights for different blood-vessel
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levels. The weighted dice loss is defined as follows

PO T° & AP AT
Lose= — | et Y (W =" . 4k}
pse <P° +7° ,ZI:( AP AT )
Here P and T represent the predicted segmentation results and
the ground-truth segmentation, while A means the differences
between i and i — 1 levels of the vessel tree.
i_pi _ pi-1
{AP._P. P 14)
ATI — Tl _ Tlfl

The weight of low-level branches w' should be lower than the
weight of high-level branches to increase the attention to the intra-
pulmonary high-level branches in the training process, and we set w' to
be inversely proportional to the volume of AT!

w0
V(AT")

Here V(-) means the calculation of volumes, and we use the counts
of voxel numbers as the volumes in our study. The weighted dice loss is
respectively computed for arteries and veins. To prevent mis-
classification between arteries and veins, we also incorporate overlap-
cross loss in our methodology:

as)

Py-Ty +Py- T,

‘y}overlap = P+T (16)
In conclusion, the overall loss function is
Z= gDSC + yoverlap (17)

Transfer learning from CTPA to non-contrast CT

To address the challenge of directly segmenting arteries and veins in
non-contrast CT, which presents difficulties for both radiologists and
networks due to low imaging contrast, we introduce a novel transfer
learning approach. Initially, radiologists annotated arteries and veins
on all the CTPA scans (n=315). Our network was trained on these
annotated scans to create an initial model. We then developed a
transformation model, utilizing methods from®, to generate synthetic
non-contrast CT images from the corresponding CTPA scans while
preserving physiological information. This transformation model
reduced the imaged blood vessel intensities (from over 200 HU to
approximately 50 HU) to resemble non-enhanced vessels while main-
taining the signals of surrounding tissues. The network was subse-
quently fine-tuned on the transformed non-contrast CT images and
then applied to segment arteries and veins on native non-contrast CT
scans. Radiologists used these initial segmentation predictions as a
basis for manually labeling the arteries and veins.

Paired non-contrast CT and CTPA with DSCTPA

Fourteen patients with suspected pulmonary embolism underwent
digital subtraction computed tomography pulmonary angiography
(DSCTPA)* utilizing a GE CT scanner (Revolution GSI). Patients were
positioned supine, with full lung coverage from the apex through the
diaphragm achieved using the following parameters: the tube voltage
equaling 120kV, X-ray tube current of 330 mA, and 1.00 mm slice
thickness. The CT scans were reconstructed with the filtered back-
projection®® reconstruction algorithm. Prior to scanning, patients
underwent respiratory training with the scanner to simulate breathing
patterns required during image acquisition. Patients were coached to
breathe as consistently as possible throughout the examination. Non-

contrast CT was performed first, followed immediately by CTPA within
a 30-second interval. For CTPA, iodixanol contrast (Visipaque 320, GE
Healthcare, Shanghai) was administered at 30-40 mL through a CT-
specific high-pressure syringe at 3.5-5mL/s flow rate. A 40 mL saline
flush followed contrast administration. The non-contrast CT scans
were utilized to compare the segmentation performance of HiPaS
against CTPA. Arteries and veins were first manually segmented on
non-contrast and CTPA scans, respectively; then we computed DSC
between the segmentation results achieved by HiPaS and the manual
annotation.

Semi-automatic artery-vein segmentation

Here we describe the method of semi-automatic artery-vein seg-
mentation, which is the prevalent clinical artery-vein segmentation
method in the absence of HiPaS, requiring the expertise of experi-
enced radiologists for its execution. The semi-automatic annotation
process commences with the radiologist uploading a CT scan into
the CT visualization software. The software employs a user-friendly
interface where radiologists can navigate through the scan slices.
Once the CT scan is loaded, the radiologist initiates the artery-vein
segmentation process by denoting the approximate location and
morphology of cardinal arteries and veins inside the heart. The
algorithm will then automatically derive the segmentations for the
cardinal arteries and veins via our in-house algorithms under the
guidance of initial annotations given by radiologists. Here the
radiologist will review the results and interactive editing the seg-
mentation results. Then this annotation will act as a seed point from
which the algorithms extrapolate to identify and segment the con-
nected vessels. The algorithms used may include region-growing
techniques, thresholding, or edge detection methods that utilize
the inherent contrast between the blood vessels and the sur-
rounding lung parenchyma. Finally, the software will derive a seg-
mentation result including both vessel trunks and intrapulmonary
arteries and veins. Such semi-automated segmentation requires
approximately thirty minutes per CT scan.

Dataset summary

This section provides a comprehensive overview of the datasets used
in the development and evaluation of HiPaS, as well as in the anato-
mical study, to facilitate data verification for readers. Initially, we uti-
lized 17,817 CT volumes from two sources: 13,000 from® and 4817
from®, for model pretraining. Subsequently, we established a dataset
of 1073 volumes with detailed artery-vein segmentation annotations,
comprising 315 CTPA and 758 non-contrast CT volumes. During the
annotation process, a human-in-the-loop strategy was employed.
Radiologists annotated the 315 CTPA volumes first. HiPaS was then
trained on these data and applied to non-contrast CT volumes for
initial segmentation. Radiologists reviewed and revised these annota-
tions, obtaining the final annotations for all 1073 volumes. For the
formal training of HiPaS, we used 875 CT volumes (all 315 CTPA and
560 non-contrast) and tested the model on a set of 198 non-contrast
CT volumes (142 normal-resolution and 56 low-resolution). An
experiment involving 14 DSCTPA cases was conducted to demonstrate
the non-inferiority of HiPaS segmentation on non-contrast CT com-
pared to CTPA. Additionally, 50 CT volumes were used to qualitatively
assess the clinical utility of HiPaS segmentation. Finally, for the ana-
tomical study, we collected a large-scale dataset of 11,784 CT volumes
from six sites, including the manually annotated 1073 volumes and an
additional 10,711 volumes.

Experimental settings

Direct training of neural networks for the segmentation of arteries
and veins in non-contrast CT images presents challenges. There-
fore, we first train the network on CTPA data, utilizing the para-
meters for initialization of the model for non-contrast CT
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segmentation. The voxel intensity of all scans is truncated within
the Hounsfield Unit (HU) window of [-1000, 600] and normal-
ization to [0, 1]. Due to the GPU memory limit, CT scans are cropped
into sub-volume cubes of the size 192 x192 x128 for segmentation
tasks. We use PyTorch to implement the proposed method. The
Adam optimizer is used for the segmentation network with an initial
learning rate of 1x10~*. The decay of the first-order momentum
gradient is 0.9, and the decay of the second-order momentum
gradient is 0.999. In the experiments, model training is executed on
a Linux workstation with NVIDIA RTX A100. Current parameters
perform well for our tasks but are not necessarily optimum.
Adjustments may be conducted for specific tasks.

Statistical analyses

To conduct a comprehensive quantitative assessment of the seg-
mentation performance, we employ various evaluation metrics,
including dice similarity coefficient (DSC), sensitivity (SEN), specify
(SPE), misclassification Score (MCS), vessel branch counts (BC),
vessel skeleton length (SL), and the 95% Hausdorff Distance (HD95).
The calculation of DSC, SEN, SPE, and HD95 adhere to the conven-
tional definitions. The MCS is employed to gauge the mis-
classification rate between arteries and veins, which is defined as
MCS = 22T Pv s The metrics of branch counts and skeleton length
are utilized to evaluate the abundance of segmented branches,
providing valuable insights into the distinctive characteristics of
pulmonary arteries and veins. To facilitate the computations, we
first re-sample all segmentation results to a standardized space with
a spatial resolution of 2% x 3% x100mm?3. Subsequently, we
employ the algorithm developed by ref. 60 to automatically extract
the vessel skeletons by reconstructing an octree data structure. The
skeleton length is determined by counting the number of pixels
within the extracted vessel skeletons, while the branch counts are
obtained by counting the number of bifurcations. HD95 is
employed to quantify the dissimilarities between the boundaries of
the segmentation results and the annotated data. Smaller values of
HD95 always indicate superior segmentation outcomes. The calcu-
lation of lung volume is performed on the segmented lung from CT
scans, following the method proposed in ref. 34. The volume of the
segmented lung subtracted the volume of all intrapulmonary blood
vessels is defined as the lung volume in our study.

Data are reported as mean +* std unless stated otherwise. In
some cases, where arterial and vein indicators need to be described
separately, we use the form mean, +std,/mean, +std, for arteries
and veins, respectively. The Wilcoxon signed-rank test is performed
to evaluate the distribution of two paired groups (such as DSC and
SEN achieved by the two methods), otherwise, the Mann-Whitney U
test is used. The association between vessel abundance and sex,
age, and lung volume is validated with both multiple linear regres-
sion and the Chi-square test. p<0.05 is considered statistically
significant in this study. P values are specified in the figures and
tables as *p<0.05, *p<0.01, **p<0.001, ***p<0.0001, NS, not
significant. All statistical analyses are performed in Python 3.8 and R
version 4.3.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data supporting the findings of this study are available in the article, its
Supplementary information, and the source data file. Example data
with annotations have been deposited on the website https://github.
com/Arturia-Pendragon-Iris/HiPaS_AV_Segmentation®. The data used
for model development and anatomical study can be obtained through
reasonable requests to corresponding authors and will be available for

data sharing upon request and after going through an external Insti-
tutional Review Board procedure. Requests should be submitted by
emailing the corresponding authors (X.G. and GN.L.) at xin.gao@-
kaust.edu.sa or gongning.luo@kaust.edu.sa. All such requests will be
responded to generally within 1 month. All data provided are anon-
ymized to protect the privacy of the patients and should be only used
for research purposes. Source data are provided with this paper.

Code availability
The code is publicly available under https://github.com/Arturia-
Pendragon-Iris/HiPaS_AV_Segmentation.

References
1. Nabel, E. G. Cardiovascular disease. N. Engl. J. Med. 349, 60-72
(2003).

2. Tarride, J. E. et al. A review of the cost of cardiovascular disease.
Can. J. Cardiol. 25, €195-e202 (2009).

3. YeY.etal Prevalence, incidence, and survival analysis of interstitial
lung diseases in Hong Kong: a 16-year population-based cohort
study. Lancet Reg. Health-West. Pac., 42 (2024)

4. Goldhaber, S. Z. & Morrison, R. B. Pulmonary embolism and deep
vein thrombosis. Circulation 106, 1436-1438 (2002).

5.  MclLaughlin, V. V. & McGoon, M. D. Pulmonary arterial hypertension.
Circulation 114, 1417-1431 (2006).

6. Sadeghi, A. H. et al. Virtual reality and artificial intelligence for
3-dimensional planning of lung segmentectomies. JTCVS Tech. 7,
309-321(2021).

7. Wang, D. et al. PLOSL: Population learning followed by one shot
learning pulmonary image registration using tissue volume pre-
serving and vesselness constraints. Med. image Anal. 79, 102434
(2022).

8. Pu, J. et al. Automated detection and segmentation of pulmonary
embolisms on computed tomography pulmonary angiography
(CTPA) using deep learning but without manual outlining. Med.
Image Anal. 89, 102882 (2023).

9. Shen, Z. et al. Accurate point cloud registration with robust optimal
transport. Adv. Neural Inf. Process. Syst. 34, 5373-5389 (2021).

10. Hulten, E. A. et al. Prognostic value of cardiac computed tomo-
graphy angiography: a systematic review and meta-analysis. J. Am.
Coll. Cardiol. 57, 1237-1247 (2011).

1. Koelemay, M. J. W. et al. Systematic review of computed tomo-
graphic angiography for assessment of carotid artery disease.
Stroke 35, 2306-2312 (2004).

12. Pasternak J. J., Williamson E. E. Clinical pharmacology, uses, and
adverse reactions of iodinated contrast agents: a primer for the non-
radiologist[C]//Mayo Clinic Proceedings. Elsevier, 87, 390-402
(2012).

13. Singh, J. & Daftary, A. lodinated contrast media and their adverse
reactions. J. Nucl. Med. Technol. 36, 69-74 (2008).

14. Jean-Marc, |. et al. Allergy-like reactions to iodinated contrast
agents. A critical analysis. Fundam. Clin. Pharmacol. 19, 263-281
(2005).

15. Nguyen, T. N. et al. Noncontrast computed tomography vs com-
puted tomography perfusion or magnetic resonance imaging
selection in late presentation of stroke with large-vessel occlusion.
JAMA Neurol. 79, 22-31(2022).

16. Buzug T. M. Computed tomography[M]//Springer handbook of
medical technology. Berlin, Heidelberg: Springer Berlin Heidelberg,
311-342. (201).

17. Nardelli, P. et al. Pulmonary artery-vein classification in CT images
using deep learning. IEEE Trans. Med. imaging 37, 2428-2440
(2018).

18. Qin, Y. et al. Learning tubule-sensitive CNNs for pulmonary airway
and artery-vein segmentation in CT. IEEE Trans. Med. imaging 40,
1603-1617 (2021).

Nature Communications | (2025)16:2262

12


https://github.com/Arturia-Pendragon-Iris/HiPaS_AV_Segmentation
https://github.com/Arturia-Pendragon-Iris/HiPaS_AV_Segmentation
https://github.com/Arturia-Pendragon-Iris/HiPaS_AV_Segmentation
https://github.com/Arturia-Pendragon-Iris/HiPaS_AV_Segmentation
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56505-6

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Pan, L. et al. Learning multi-view and centerline topology con-
nectivity information for pulmonary artery-vein separation. Com-
put. Biol. Med. 155, 106669 (2023).

Wu, Y. et al. Transformer-based 3D U-Net for pulmonary vessel
segmentation and artery-vein separation from CT images. Med. Biol.
Eng. Comput. 61, 2649-2663 (2023).

Voelkel, N. F. & Tuder, R. M. Hypoxia-induced pulmonary vascular
remodeling: a model for what human disease?. J. Clin. Investig. 106,
733-738 (2000).

Chu, Y. et al. Improving Representation of High-frequency Compo-
nents for Medical Foundation Models. arXiv preprint
arXiv:2407.14651, (2024).

Wang, G., Ye, J. C. & De Man, B. Deep learning for tomographic
image reconstruction. Nat. Mach. Intell. 2, 737-748 (2020).

Chu, Y. et al. Topology-Preserving Computed Tomography Super-
Resolution Based on Dual-Stream Diffusion Model[C]//International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Cham: Springer Nature Switzerland. 260-270. (2023).
Shan, H. et al. Competitive performance of a modularized deep
neural network compared to commercial algorithms for low-dose
CT image reconstruction. Nat. Mach. Intell. 1, 269-276 (2019).

Liu, J. et al. DFSNE-Net: Deviant feature sensitive noise estimate
network for low-dose CT denoising. Comput. Biol. Med. 149,
106061 (2022).

Brady, S. L. et al. Improving image quality and reducing radiation
dose for pediatric CT by using deep learning reconstruction. Radi-
ology 298, 180-188 (2021).

Dong, Z. et al. MNet: Rethinking 2D/3D Networks for Anisotropic
Medical Image Segmentation[C]//Thirty-First International Joint
Conference on Artificial Intelligence {IJCAI-22}. International Joint
Conferences on Atrtificial Intelligence Organization 870-876. (2022).
Winer-Muram, H. T. et al. Suspected acute pulmonary embolism:
evaluation with multi-detector row CT versus digital subtraction
pulmonary arteriography. Radiology 233, 806-815 (2004).

Zhang, M. et al. Multi-site, multi-domain airway tree modeling. Med.
Image Anal. 90, 102957 (2023).

Eisma, J. J. et al. Deep learning segmentation of the choroid plexus
from structural magnetic resonance imaging (MRI): validation and
normative ranges across the adult lifespan. Fluids Barriers CNS 21,
1-13 (2024).

Wolny, A. et al. Accurate and versatile 3D segmentation of plant
tissues at cellular resolution. Elife 9, €57613 (2020).

Isensee, F. et al. nnU-Net: a self-configuring method for deep
learning-based biomedical image segmentation. Nat. methods 18,
203-211 (2021).

Zhou, L. et al. An interpretable deep learning workflow for dis-
covering subvisual abnormalities in CT scans of COVID-19 inpa-
tients and survivors. Nat. Mach. Intell. 4, 494-503 (2022).

Xu, X. et al. Age-related impairment of vascular structure and
functions. Aging Dis. 8, 590 (2017).

Ji, H. et al. Sex differences in myocardial and vascular aging. Circ.
Res. 130, 566-577 (2022).

Shahin, Y. et al. Quantitative CT evaluation of small pulmonary
vessels has functional and prognostic value in pulmonary hyper-
tension. Radiology 305, 431-440 (2022).

Hueper, K. et al. Pulmonary microvascular blood flow in mild
chronic obstructive pulmonary disease and emphysema. The MESA
COPD Study. Am. J. Respir. Crit. Care Med. 192, 570-580 (2015).
Karnati, S. et al. Chronic obstructive pulmonary disease and the
cardiovascular system: vascular repair and regeneration as a ther-
apeutic target. Front. Cardiovasc. Med. 8, 649512 (2021).

Blanco, ., Piccari, L. & Barbera, J. A. Pulmonary vasculature in
COPD: the silent component. Respirology 21, 984-994 (2016).

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Molgat-Seon, Y., Peters, C. M. & Sheel, A. W. Sex-differences in the
human respiratory system and their impact on resting pulmonary
function and the integrative response to exercise. Curr. Opin. Phy-
siol. 6, 21-27 (2018).

Morris, H. et al. Sex differences in pulmonary hypertension. Clin.
Chest Med. 42, 217-228 (2021).

Gillis, E. E. & Sullivan, J. C. Sex differences in hypertension: recent
advances. Hypertension 68, 1322-1327 (2016).

Jarman, A. F. et al. Crucial considerations: Sex differences in the
epidemiology, diagnosis, treatment, and outcomes of acute pul-
monary embolism in non-pregnant adult patients. J. Am. Coll.
Emerg. Phys. Open 2, 12378 (2021).

Sedhom, R. et al. Sex differences in management and outcomes
among patients with high-risk pulmonary embolism: a nationwide
analysis[C]//Mayo Clinic Proceedings. Elsevier, 97, 1872-1882
(2022).

Gazdar, A. F. & Thun, M. J. Lung cancer, smoke exposure, and sex.
J. Clin. Oncol. 25, 469-471 (2007).

Tai, R. et al. Frequency and severity of pulmonary hemorrhage in
patients undergoing percutaneous CT-guided transthoracic lung
biopsy: single-institution experience of 1175 cases. Radiology 279,
287-296 (2016).

Olson, T. P., Beck, K. C. & Johnson, B. D. Pulmonary function
changes associated with cardiomegaly in chronic heart failure. J.
Card. Fail. 13, 100-107 (2007).

Disthabanchong, S. & Boongird, S. Role of different imaging mod-
alities of vascular calcification in predicting outcomes in chronic
kidney disease. World J. Nephrol. 6, 100 (2017).

Sakao, S., Voelkel, N. F. & Tatsumi, K. The vascular bed in COPD:
pulmonary hypertension and pulmonary vascular alterations. Eur.
Respir. Rev. 23, 350-355 (2014).

Brandts, A. et al. Site-specific coupling between vascular wall
thickness and function: an observational MRI study of vessel wall
thickening and stiffening in hypertension. Investigative Radiol. 48,
86-91(2013).

He, K. et al. Masked autoencoders are scalable vision learners//
Proceedings of the IEEE/CVF Conference on Computer Vision And
Pattern Recognition.16000-16009. (2022).

Tian, K. et al. Designing BERT for Convolutional Networks: Sparse
and Hierarchical Masked Modeling[C]//The Eleventh International
Conference on Learning Representations. (2022).

Draelos, R. L. et al. Machine-learning-based multiple abnormality
prediction with large-scale chest computed tomography volumes.
Med. Image Anal. 67, 101857 (2021).

Colak, E. et al. The RSNA pulmonary embolism CT dataset. Radi-
ology: Artificial Intelligence, 3, e200254. (2021).

Chen, H. et al. Low-dose CT with a residual encoder-decoder con-
volutional neural network. IEEE Trans. Med. imaging 36,
2524-2535 (2017).

Frangi, A. F. et al. Multiscale vessel enhancement filtering[C]//
Medical Image Computing and Computer-Assisted Intervention—
MICCAI'98: First International Conference Cambridge, MA, USA,
October 11-13, 1998 Proceedings 1. Springer Berlin Heidelberg
130-137. (1998).

Hachaj, T. & Piekarczyk, M. High-Level Hessian-Based Image Pro-
cessing with the Frangi Neuron. Electronics 12, 4159 (2023).
Leuschner, J., Schmidt, M., Baguer, D. O. & Maass, P. LoDoPaB-CT,
a benchmark dataset for low-dose computed tomography recon-
struction. Sci Data. 8, 109 (2021).

Cornea, N. D. et al. Computing hierarchical curve-skeletons of 3D
objects. Vis. Comput. 21, 945-955 (2005).

Yu, W. et al. Tnn: Tree neural network for airway anatomical label-
ing. IEEE Trans. Med. Imaging 42, 103-118 (2022).

Nature Communications | (2025)16:2262

13


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56505-6

62. Gu, X. et al. Contrast-enhanced to non contrast CT transformation
via an adjacency content-transfer-based deep subtraction residual
neural network. Phys. Med. Biol. 66, 145017 (2021).

63. Willemink, M. J. & Noél, P. B. The evolution of image reconstruction
for CT—from filtered back projection to artificial intelligence. Eur.
Radiol. 29, 2185-2195 (2019).

64. Yuetan Chu, Deep learning-driven pulmonary artery and vein seg-
mentation reveals demography-associated vasculature anatomical
differences, HiPaS Artery-vein Segmentation. https://doi.org/10.
5281/zenodo.14334239 (2024).

Acknowledgements

Yuetan Chu, Gongning Luo, Longxi Zhou, Juexiao Zhou, Changchun
Yang, and Xin Gao were supported by the King Abdullah University of
Science and Technology (KAUST) Office of Research Administration
(ORA) under Award No REI/1/5234-01-01, REI/1/5414-01-01, REI/1/5289-
01-01, REI/1/5404-01-01, REI/1/5992-01-01, URF/1/4663-01-01, Center of
Excellence for Smart Health (KCSH), under award number 5932, Center
of Excellence on Generative Al, under award number 5940. Zhaowen
Qiu was supported by Heilongjiang Provincial Key Research and
Development Plan 2023ZX02C10, 2022ZX01A30, and GA23C007,
Hunan Provincial Key Research and Development Plan 2023SK2060,
and Jiangsu Provincial Key Research and Development Plan BE2023081.

Author contributions

X.G., G.L.,and Y.C. conceived this study. X.G., G.L. Y.C., and L.Z. initiated
the study. S.C., G.M, XM, D.X, D.M, X.X, L.W., and Z.Q. prepared the CT
datasets and provided the annotations of pulmonary arteries and veins.
Y.C. implemented the HiPaS method. Y.C., G.L., L.Z,, J.Z., and C.Y,
completed the data analysis. Y.C. and G.L. wrote the manuscript under
the supervision of X.G.; R.H. and G.S. revised the manuscript and pro-
vided valuable suggestions. All authors are involved in the discussion
and finalization of the manuscript.

Competing interests
The authors declare no competing interests.

Ethics

The patient data were collected from The First Affiliated Hospital of
Harbin Medical University, the Fourth Affiliated Hospital of Harbin
Medical University, Mudanjiang First People’s Hospital, China-Japan
Friendship Hospital, Shanghai Renji Hospital, and Guangdong Provincial
People’s Hospital, following the approval from the Institutional Review
Board. The experiment using DSCTPA was approved by the Fourth

Affiliated Hospital of Harbin Medical University. The study was also
approved by the Institutional Biosafety and Bioethics Committee at King
Abdullah University of Science and Technology. Informed consent was
waived in the training cohort and the inpatient cohort due to the retro-
spective nature of the study. Datasets used were anonymised and any
sensitive privacy information was systematically removed.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-56505-6.

Correspondence and requests for materials should be addressed to
Gongning Luo, Gianluca Setti, Xigang Xiao, Lianming Wu, Zhaowen Qiu
or Xin Gao.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

'Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. 2Computer
Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST),
Thuwal, Kingdom of Saudi Arabia. *Center of Excellence on Generative Al, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of
Saudi Arabia. “Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, China. >Department of Radiology, China-Japan Friendship
Hospital, Beijing, China. ®Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China. "Department of
Computer Tomography, The First Affiliated Hospital of Harbin Medical University, Harbin, China. ®Department of Radiology, Affiliated Nanjing Drum Tower
Hospital of Nanjing University Medical School, Nanjing, China. °Electrical and Computer Engineering Program, Computer, Electrical and Mathematical
Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. "°Department of
Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. ""College of Computer and Control Engineering, Northeast
Forestry University, Harbin, China. ?These authors contributed equally: Yuetan Chu, Gongning Luo. e-mail: gongning.luo@kaust.edu.sa; gianluca.-
setti@kaust.edu.sa; xxgct_417@126.com; wlmssmu@126.com; giuzw@nefu.edu.cn; xin.gao@kaust.edu.sa

Nature Communications | (2025)16:2262 14


https://doi.org/10.5281/zenodo.14334239
https://doi.org/10.5281/zenodo.14334239
https://doi.org/10.1038/s41467-025-56505-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gongning.luo@kaust.edu.sa
mailto:gianluca.setti@kaust.edu.sa
mailto:gianluca.setti@kaust.edu.sa
mailto:xxgct_417@126.com
mailto:wlmssmu@126.com
mailto:qiuzw@nefu.edu.cn
mailto:xin.gao@kaust.edu.sa
www.nature.com/naturecommunications

	Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences
	Results
	HiPaS framework and datasets
	Performance evaluation on external dataset
	Performance comparison between non-contrast CT and CTPA
	Prospective clinical utility
	HiPaS enables vasculature anatomical study in large cohorts

	Discussion
	Methods
	Problem formalization
	Model pretraining with masked autoencoder
	CT spatial-normalization with I2SR module
	Image enhancement and objective function for I2SR
	Artery-vein segmentation with saliency-transmission segmentation module
	Transfer learning from CTPA to non-contrast CT
	Paired non-contrast CT and CTPA with DSCTPA
	Semi-automatic artery-vein segmentation
	Dataset summary
	Experimental settings
	Statistical analyses
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Ethics
	Additional information




