
Article https://doi.org/10.1038/s41467-023-41703-x

A unified method to revoke the private data
of patients in intelligent healthcare with
audit to forget

Juexiao Zhou1,2,3, Haoyang Li 1,2,3, Xingyu Liao 1,2, Bin Zhang1,2, Wenjia He1,2,
Zhongxiao Li 1,2, Longxi Zhou 1,2 & Xin Gao 1,2

Revoking personal private data is one of the basic human rights. However,
such right is often overlooked or infringed upon due to the increasing col-
lection and use of patient data for model training. In order to secure patients’
right to be forgotten, we proposed a solution by using auditing to guide the
forgetting process, where auditing means determining whether a dataset has
been used to train the model and forgetting requires the information of a
query dataset to be forgotten from the target model. We unified these two
tasksby introducing an approach called knowledgepurification. To implement
our solution, we developed an audit to forget software (AFS), which is able to
evaluate and revoke patients’ private data from pre-trained deep learning
models. Here, we show the usability of AFS and its application potential in real-
world intelligent healthcare to enhanceprivacyprotection anddata revocation
rights.

Revoking personal private data is one of the basic human rights,
which has already been sheltered by privacy-preserving regulations
like The General Data Protection Regulation (GDPR)1, The Health
Insurance Portability and Accountability Act of 1996 (HIPAA)2, and
the California Consumer Privacy Act3 since twentieth century. With
those regulations, users are allowed to request the deletion of their
own data for privacy concerns and to secure their own “right to be
forgotten”. However, with the development of data science, machine
learning (ML) and deep learning (DL) techniques, this basic right is
usually neglected or violated. For example, it has been observed that
patients’ genetic markers were leaked from ML methods for
genetic data processing4,5 while the patients were unaware of that.
When users realize the existence of such risks, they may request their
own data to be deleted to protect their privacy6. Meanwhile, those
aforementioned regulations will force involved third parties to take
actions immediately. According to the requirements of those regula-
tions, not only the previously authorized data by individuals need
to be deleted immediately from hosts’ storage systems but also the

associated information should be removed from DL models trained
with those data, because DL models could memorize sensitive infor-
mation of training data and thus expose individual’s privacy under
risk7–11.

Nowadays, healthcare is one of the most promising areas for the
deployment of artificial intelligent (AI) systems as so-called intelligent
healthcare.ML andDL-based computer-aideddiagnosis (CAD) systems
in intelligent healthcare accelerate the diagnosis of various diseases
and achieve even better results than doctors, such as tumor
detection12,13, retinal fundus imaging14, detection and segmentation of
COVID-19 lung infections15,16 and so on. However, as more and more
patients’ data are being collected and used for model training in
intelligent healthcare, their privacy is exposed to high risk. Therefore,
intelligent healthcare is a sector where technology must meet the law,
regulations, and privacy principles to ensure that the innovation is for
the common good17. To obey those privacy-preserving regulations,
methods to revoke personal private data from pre-trained DL models
are necessary.
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Deleting the stored personal data is simple, whereas forgetting
individuals’ private information from pre-trained DL models could be
difficult as we could not fully measure the contribution of individual
data on the training process of DL models due to the stochasticity of
training18. Besides, due to the incremental nature of training, themodel
update brought by one sample would affect the model performance
on samples followed, thus making it difficult to unlearn18. Finally, cat-
astrophic unlearning might happen and the unlearned model will
perform worse than the model retrained on the remaining dataset19.

In general, the process to forget data from a pre-trained DL model
could be divided into two steps. Firstly, the unlearning process (for-
getting) is performed on a given pre-trained DL model to forget the
target data with different techniques and a new DL model will be gen-
erated. Secondly, an evaluation of the new model (auditing) against
different metrics will be performed to prove that the model has for-
gotten the target data. These two processes should be repeated until
the new model passes the evaluation. In simple terms, there are two
commonly acknowledged sub-tasks, which could also be stated in the
reverse order: auditing and forgetting, as a two-player game. Auditing
requires auditors to precisely evaluate whether the data of certain
patientswereused to train the targetDLmodel. Once thedata of certain
patients is confirmed to be used to train the target DL model by
auditing, forgetting requires the removal of learnt information of cer-
tain patients’ data from the target DL model, which is also called
machine unlearning, while auditing could act as the verification of
machine unlearning18.

In order to achieve forgetting, existing unlearningmethods could
be classified into three major classes, including model-agnostic
methods, model-intrinsic methods and data-driven methods20.
Model-agnostic methods refer to algorithms or frameworks that can
be used for different DL models, including differential privacy18,21–23,
certified removal24–26, statistical query learning6, decremental
learning27, knowledge adaptation28,29 and parameter sampling30.
Model-intrinsic approaches are those methods designed for specific
types of models, such as for softmax classifiers31, linear models32, tree-
based models33 and Bayesian models19. Data-driven approaches focus
on the data itself, including data partitioning18, data augmentation34–36

and other unlearning strategies based on data influence37. However,
most of them are theoretical studies and do not provide open-source
codes. Besides,mostmethods have their specific application scenarios
and acknowledged limitations and few of them focused on the appli-
cation in real-world intelligent healthcare. Among the three methods,
model-agnostic methods might have the strongest application pro-
spects, as they can be applied to different models, and SISA, short for

Sharded, Isolated, Sliced, and Aggregated training, is the most classic
and well-known method in the community38. As the state-of-the-art
method, Goel et al.39 proposed Catastrophic Forgetting-k (CF-k) and
Exact Unlearning-k (EU-k) to unlearn information from deep learning
models. CF-k means to finetune the last k layers of the original model
on Dr and freeze other layers, while EU-k means to retrain the last k
layers of the original model from scratch onDr and freeze other layers,
where the Dr stands for the retain dataset.

When forgetting is accomplished, auditing is the next necessary
step to verify it. Different metrics have been proposed to audit the
membership of the query dataset, including accuracy, completeness6,
unlearn time, relearn time, retrain time, layer-wise distance, activation
distance, JS-divergence, membership inference40,41, ZRF score28, epis-
temic uncertainty42 and model inversion attack7. In recent studies,
membership inference-based metrics were frequently utilized to
determine whether or not any information about the samples to be
forgotten was retained in themodel in intelligent healthcare41. A black-
box setting was shared by the membership inference attack (MIA) to
calculate the probability of a single datapoint being a member of the
training dataset D. Based on this individual-level MIA, Liu et al.40 and
Yangsibo et al.41 focused on a more challenging task: audit the mem-
bership of a set of data points. The ensembled membership auditing
(EMA)41 was proposed as the state-of-the-art method to verify whether
a query dataset ismemorizedby apre-trainedDLmodel, which is also a
benchmark metric in machine unlearning. However, due to the black
box property of DL models, efficient and accurate auditing is still
challenging and an under-studied topic. Moreover, researchers have
tended to treat auditing and forgetting as separate tasks, ignoring the
fact that the two can be linked up associatively to work as a self-
consistent mechanism.

Here, we proposed a solution by using auditing to guide the for-
getting process in a negative feedback manner. We unified the two
tasks by introducing knowledge purification (KP), an approach to
selectively transfer the needed knowledge to forget the target infor-
mation instead of simply transferring all information like knowledge
distillation (KD)43. On the basis of KP, we have developed a user-
friendly and open-source audit to forget software (AFS) (Fig. 1), which
can be easily used to revoke patients’ private data from DL models in
intelligent healthcarewith KP (Fig. 2). Todemonstrate the generality of
AFS, we applied it to four tasks based on four datasets, including the
MNIST dataset, the PathMNIST dataset, the COVIDx dataset, and the
ASDdataset, with different data sizes and various architectures of deep
learning networks (Fig. 3). Our results demonstrate the usability of AFS
and its application potential in real-world intelligent healthcare to
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Fig. 1 | AFS is a unified method to revoke patients’ private data in intelligent
healthcare.The left side of the figure illustrates the high-level iterative flow of AFS,
while the right side illustrates the details of how forgetting and auditing work
together. As shown on the left side, given a pre-trained DL model and a query
dataset (patients’ private data), AFS could audit and provide confidence whether
the query dataset has been used to train the target DL model. When a dataset has

beenused to train the targetDLmodel, AFS couldeffectively forget the information
about the dataset from the target DL model with the guidance of auditing. To
achieve that, we proposed amethod called knowledge purification as shownon the
right side, which utilizes results from auditing as a new term in the loss function to
forget information. The brain icon is Designed by macrovector/Freepik.
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enhance privacy protection and data revocation rights. AFS is a unified
method of auditing and forgetting that could effectively forget the
information of the target query dataset from the pre-trained DLmodel
with the guidance of auditing. AFS could generate a smaller model,
which requires much less time and GPUmemory during the inference,
by training with a partial training dataset (~50%) with our KP approach.

Results
AFS audits private datasets stably and robustly
To evaluate the robustness of auditing by AFS, we used it to audit
query datasets with different sizes, various purity (k percent of the
query dataset was overlapped with the training dataset) and the dif-
ferent sizes of calibration dataset (the size ranged from 100 to 5000)
(“Method” and Fig. 4a). For each sample in the query dataset, AFS
calculates three metrics for the membership inference, including
correctness, confidence and negative entropy (“Method”). As shown in
Figs. 4b and S1, all threemetrics showed different distributions for QO
(query dataset overlapped with the training dataset) and QNO (query
dataset disjoint with the training dataset), indicating the dataset-wise
divergence of metrics between samples in the training dataset and
samples disjoint with the training dataset. Given the differences
observed in the three metrics, we could distinguish between QO and
QNO by calculating the p value and utilizing it as the sole audit metric
for forgetting (Method). Finally, by integrating these three metrics,
AFS reports a p value to evaluate whether or not a query dataset has
been used to train the target DLmodel. The large p values indicate the
higher probability that the query dataset was used in training.

When the size of the query dataset and the calibration dataset
varied, AFS could still efficiently distinguish QO and QNO (Fig. 4c, d).
Compared to QO, AFS reported a much smaller p value for QNO,
indicating a weak membership (a small probability that the query
dataset has been used to train the target DL model), thus allowing
users to judge whether the query dataset was used to train the target
DLmodel. Meanwhile, when the size of the dataset increased from 1 to
2000, AFS discriminatedQO andQNOmore confidently as there was a
more significant divergence of the p values, which was not affected by
the size of the calibration dataset. To further understand the effect of
the purity of the query dataset in auditing, we mixed some samples
from the training dataset to QNO, thus the new query dataset was
labeled as QM (partial data overlapped with the training dataset). The
percentage of data overlapped with the training dataset in QM was
denotedby k = number of data overlapped with training dataset

size of QM . As shown in Fig. 4e,
AFS showed a decreasing p value trend when k decreased, meaning
that the query dataset was less likely to be used to train the target DL
model. The distinctiveness of the p value on the ASD dataset is due to
the small size of the ASD dataset. k =0 was shown in Fig. 4d as QNO,
whichoccurredwhen the query dataset sizewas 100 for ASD and 2000
for MNIST, PathMNIST, and COVIDx. Similarly, k = 1 was also displayed
in Fig. 4d as QO, which occurred when the query dataset size was 100
for ASD and 2000 for MNIST, PathMNIST, and COVIDx. In conclusion,
these results indicate the robustness of AFS in determining whether
the query data has been used to train the target DL model.

AFS forgets the information of query dataset, maintains perfect
usability and generates smaller model
Once the prior knowledge that a dataset has been used to train
the target DL model is confirmed with auditing, AFS could be used
for forgetting, to remove the information of the dataset from
the pre-trained DLmodel. To comprehensively show the ability of AFS
in removing information against the model performance, we com-
pared nine methods, including (1) training the teacher model with
a complete training dataset (Independent teacher), (2) retraining
the student model with a complete training dataset (Independent
student), (3) retraining the teacher model with k∈ {0.25, 0.5, 0.75}
percentage of the complete training dataset excluding the data to
be forgotten (Independent teacher with k∈ {0.25, 0.5, 0.75}), (4)
retraining the student model with k∈ {0.25, 0.5, 0.75} percentage
of the complete training dataset excluding the data to be forgotten
(Independent Student with k∈ {0.25, 0.5, 0.75}), (5) retraining
the model of the corresponding shard with SISA, (6) fine-tuning the
last layers of the model with CF-k, (7) retraining the last layers of
the model from scratch with EU-k, (8) AFS, and (9) training the
student model with AFS without the guidance of auditing (AFS w/o
Audit), as an ablation study of AFS. Both AFS w/o Audit and AFS were
also conducted with varied k∈ {0.25, 0.5, 0.75}. For both Independent
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Purified Knowledge
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Fig. 2 | Illustration of knowledge distillation and knowledge purification. Knowledge purification requires the selective transfer of the needed knowledge in the
process of knowledge distillation to forget the target information instead of simply transferring all information.
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Fig. 3 | Illustration of four datasets and DLmodels used to show the versatility
of AFS. Two benchmark datasets (MNIST and PathMNIST) and two healthcare
datasets (COVIDx and Autism spectrum disorder) were used in this work.
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teacher and Independent student methods trained with the complete
training dataset, QF100 and QF1000 were included in the training data-
set, while these two query datasets were excluded from the training
dataset when k∈ {0.25, 0.5, 0.75}.

Taking the MNIST dataset as an example, for models trained with
eachmethod, except for auditing on QO and QNO, we further audited
the membership of two datasets designed to be forgotten (a small
query dataset QF100 and a large query dataset QF1000) to assess the
ability of different methods in forgetting the query dataset. As shown
inTable 1, regardlessof themodel trainedbasedonwhichmethod, AFS
could effectively distinguish between QO and QNO, and the diver-
gence in auditing two query datasets was enlarged as the size of the
query dataset increased.

As shown in Table 2, AFS perfectly predicted the membership of
QF100 and QF1000 on both models from Independent teacher and
Independent studentmethods as both querydatasets were included in
the training dataset. Since both query datasets were disjoint with the
partial training dataset when k∈ {0.25, 0.5, 0.75}, thus auditing on the
model trained with Independent teacher and Independent student
with k∈ {0.25, 0.5, 0.75} weakly denied the membership of QF100

(PQF100,k =0:75 = 1:57E � 1, PQF100,k =0:5 = 1:56E � 1,PQF100,k =0:25 = 8:17E � 2
for Independent teacher and PQF100,k =0:75 = 4:36E � 2,PQF100,k =0:5 =
6:91E � 3,PQF100,k =0:25 = 6:91E � 3 for Independent student) and
QF1000 (PQF1000,k =0:75 = 1:05E � 8,PQF1000,k =0:5 = 2:71E � 11,PQF1000,k =

0:25 = 2:80E � 18 for Independent teacher and PQF1000,k =0:75 = 5:26E �
12,PQF1000,k =0:5 = 2:34E � 15,PQF1000,k =0:25 = 2:90E � 19 for Indepen-
dent student). However, since only the partial training dataset was
usedwhen k∈ {0.25, 0.5, 0.75}, the retrainedmodels with Independent
student and Independent student only learnt the information of the
partial training dataset and lost the information from the remaining
data in the complete training dataset, thus resulting in the significant
drop of model performance compared to either the Independent
student or the Independent teacher trainedwith the complete training
dataset. The same conclusion could be drawn with SISA (The training
data were divided into 10 shards. Then, QF was removed from the
shard where the QF was located, and the model of the corresponding
shard was re-trained to re-aggregate the final model). Meanwhile, due
to the unique design, SISA requires storing 10 model parameters
simultaneously, resulting in greater storage consumption than AFS.
Although CF-k and EU-k achieved good accuracy and F1-score, the

a Target DL Model
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Query Dataset
(QNO)
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Fig. 4 | Performance of auditing using AFS on the four datasets.
a Demonstration of the training dataset, the test dataset, the calibration dataset,
and the query dataset overlapped with the training dataset (QO) and the query
dataset disjointed with the training dataset (QNO). b Distribution of three metrics
for samples inQOandQNO. cTheperformanceof auditingwhen varying the size of

the calibration dataset and the size of the query dataset. d The p value of auditing
on QO and QNO of four datasets. p values were calculated using two-tailed Stu-
dent’s t test. e The p value of auditing when varying k of the query dataset of four
datasets. p values were calculated using two-tailed Student’s t test.
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audit results showed that only fine-tuning or retraining the last few
layers of the original model is not enough to forget the information of
the query data.

To rescue the information lost due to the usage of partial training
samples and further increase the model performance, AFS could
use only a partial training dataset (k∈ {0.25, 0.5, 0.75}) to transfer the
knowledge from the Independent teacher pre-trained with the

complete training dataset. As shown in Table 2, themodel trainedwith
AFS provided higher accuracy and F1-score compared to the Inde-
pendent student trained with partial training dataset (k∈ {0.25, 0.5,
0.75}) and together with a better forgetting performance (much
smaller auditing score on QF100 and QF1000), as AFS used auditing as
feedback for forgetting and could forget not only the query samples
but also other samples with similar features.

Table 1 | Comparison of AFS with other methods on auditing QO and QNO from the MNIST dataset with a varied number of
samples in the query dataset

Methods QO QNO

1 10 100 500 1000 2000 1 10 100 500 1000 2000

Independent teacher 1 1 1 1 1 1 1 7.32e−01 7.39e−02 2.43e−05 1.06e−08 4.68e−18

Independent student 1 1 1 3.43e−01 4.22e−01 8.61e−02 1 6.96e−01 4.50e−02 2.74e−06 4.51e−11 8.58e−22

Independent tea-
cher (k = 0.75)

1 1 1 1 1 1 1 5.62e−01 8.84e−02 2.38e−05 3.93e−09 1.87e−19

Independent stu-
dent (k = 0.75)

1 1 1 6.80e−01 1.67e−01 7.87e−02 1 5.27e−01 2.28e−02 7.50e−07 4.61e−14 3.10e−27

AFS w/o Audit (k = 0.75) 1 1 1 8.64e−01 5.91e−01 5.26e−01 1 5.98e−01 1.02e−01 6.49e−06 4.15e−11 1.28e−20

AFS (k = 0.75) 1 1 8.64e−01 1 8.64e−01 4.54e−01 1 6.96e−01 2.94e−02 1.45e−06 9.06e−13 3.79e−24

Independent tea-
cher (k = 0.5)

1 1 1 1 1 1 1 6.96e−01 1.56e−02 1.84e−06 1.67e−12 4.81e−26

Independent stu-
dent (k = 0.5)

1 1 8.64e−01 5.59e−01 2.39e−01 2.49e−02 1 8.13e−01 7.75e−02 6.44e−08 1.63e−15 4.15e−30

AFS w/o Audit (k = 0.5) 1 1 1 8.64e−01 8.64e−01 8.64e−01 1 5.98e−01 1.32e−01 5.94e−06 2.43e−12 5.73e−23

AFS (k = 0.5) 1 1 1 8.64e−01 1 7.27e−01 1 6.68e−01 2.88e−02 9.25e−07 3.70e−13 3.10e−27

Independent tea-
cher (k = 0.25)

1 1 1 1 1 1 1 8.66e−01 5.27e−02 6.05e−06 3.24e−18 9.75e−34

Independent stu-
dent (k = 0.25)

1 1 1 8.64e−01 8.64e−01 3.17e−01 1 5.98e−01 1.04e−02 6.40e−10 3.05e−20 1.22e−38

AFS w/o Audit (k = 0.25) 1 1 1 1 1 1 1 5.27e−01 4.47e−02 7.49e−07 2.18e−13 5.96e−28

AFS (k = 0.25) 1 1 1 1 1 1 1 6.96e−01 8.52e−03 3.85e−10 1.98e−20 1.29e−41

SISA (10 shards) 1 1 1 1 1 1 1 7.08e−01 7.20e−02 4.61e−05 3.81e−09 6.34e−21

CF-k (k = 1) 1 1 1 1 1 1 1 7.32e−01 1.11e−01 7.64e−05 5.48e−08 2.32e−17

EU-k (k = 1) 1 1 1 8.66e−01 1 4.91e−01 1 5.98e−01 4.10e−02 1.29e−05 7.96e−11 2.90e−22

The data in the table show the results of auditing QO and QNO on models trained by different methods. The numerical values in the table represent p values. A larger value indicates stronger
membership. p values were calculated using two-tailed Student’s t test.

Table 2 | Comparison of AFS with other methods on forgetting QF and model performance with the MNIST dataset

Methods QF100 QF1000 Accuracy F1-score

Independent teacher 1 1 0.9622 0.9911

Independent student 1 1 0.9504 0.9911

Independent teacher (k = 0.75) 1.57e−01 1.05e−08 0.9548 0.9915

Independent student (k = 0.75) 4.36e−02 5.26e−12 0.9458 0.9880

AFS w/o Audit (k = 0.75) 3.19e−01 1.33e−06 0.9582 0.9884

AFS (k = 0.75) 1.08e−03 5.22e−23 0.9470 0.9889

Independent teacher (k = 0.5) 1.56e−01 2.71e−11 0.9437 0.9898

Independent student (k = 0.5) 6.91e−03 2.34e−15 0.9282 0.9848

AFS w/o Audit (k = 0.5) 1.57e−01 7.79e−07 0.9526 0.9884

AFS (k = 0.5) 1.27e−02 9.44e−22 0.9380 0.9866

Independent teacher (k = 0.25) 8.17e−02 2.80e−18 0.9176 0.9871

Independent student (k = 0.25) 6.91e−03 2.90e−19 0.9067 0.9875

AFS w/o Audit (k = 0.25) 1.57e−01 7.04e−10 0.9388 0.9875

AFS (k = 0.25) 5.79e−04 6.84e−33 0.9174 0.9853

SISA (10 shards, QF excluded, k = 0.99 for QF100 and 0.9 for QF1000 3.18e−01 6.12e−09 0.9568 0.9911

CF-k (QF excluded) 1 1 0.9608 0.9907

EU-k (QF excluded) 1 1.41e−02 0.9504 0.9898

QF100 is the small querydataset containing 100 samples andQF1000 is the large querydataset containing 1000samples.Wepresent thep values of auditingmodels trainedwithdifferentmethods
on QF100 and QF1000 and the model performance including the accuracy and F1-score. p values were calculated using two-tailed Student’s t test.
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We also applied AFS on the 9-classes classification of hematoxylin
and eosin-stained histological images from the PathMNIST dataset with
CNN. As shown in Table 3, AFS could still distinguish QO and QNO from
the PathMNIST dataset. The divergence of auditing between QO
and QNO was more significant than that on the MNIST dataset. With
the requirement to forget both query datasets (QF100 and QF1000),
the model trained with AFS outperformed on forgetting information
(PQF100,k =0:75 = 2:25E � 5, PQF100,k =0:5 = 2:87E � 6, PQF100,k =0:25 =
3:32E � 7, PQF1000,k =0:75 = 2:05E � 41, PQF1000,k =0:5 = 4:75E � 35,
PQF1000,k =0:25 = 1:84E � 56) while learnt more information from the
Independent teacher model trained with a complete training dataset.

In summary, AFS could effectively forget the information of the
query dataset from the target DL model. Since KP was integrated into
AFS, it could generate a smaller DL model, which masters knowledge
from the larger teacher model by using only a partial training dataset
(k=0.5 could achieve a good balance between forgetting and model
performance), without the need to retrain the larger model with the
complete training dataset. Compared to retraining the student
model, the model trained with AFS showed even better performance
in forgetting the information while maintaining better model perfor-
mance (accuracy and F1-score) as it learnt the knowledge from
the model trained with the complete training dataset. As shown by the
ablation study in Tables 2 and 4, compared to AFS w/o Audit, the audit-
guided AFS could forget the information more significantly but with an
acceptable cost in decreasing the model performance (accuracy and
F1-score).

Apply AFS to forget medical images
To show the versatility of AFS, we applied it to the classification of
pneumonia and normal with chest X-ray images from the COVIDx
dataset with ResNet, which is a classic task inmedical image analysis. As
shown in Fig. 5a, on both query datasets (QF100 and QF1000), AFS could

effectively forget the information of the query dataset, while generating
the new model with much less number of parameters as shown
in Fig. 5b. Surprisingly, themodel generated by AFS showed even better
accuracy than the Independent teacher trained with the complete
dataset and the Independent student trained with the partial
trainingdataset. This result not only indicated that AFS could effectively
transfer the knowledge from the teacher model to the student
model but also suggested that the student model with simpler archi-
tecture could even perform better than the teacher model with KP in
AFS due to the reduction of model parameters and purification of
knowledge in some real-world cases. Meanwhile, the results also
showed that the student model trained by the AFS achieved better
generalization ability than the model obtained by using the exact same
model structure and training data using only the hard-target training
method.

Apply AFS to forget electrical health records
To further prove the generalizability of AFS in both the auditing
and forgetting, we applied AFS to predicting early autism spectrum
disorder (ASD) traits of toddlers, which contains sensitive information
about patients, such as the age, gender and the family gene trait.
That information was stored as electrical health records (EHR). As
shown in Fig. 5a, similar to previous results on other datasets, AFS
effectively removed the information of both query datasets from the
pre-trained DL model. Since the size of the ASD dataset was
quite small,weadopted twosmaller querydatasets (QF50 andQF100) to
be forgotten. Compared to the models trained with other methods,
the model trained with AFS successfully forgot the information of
both QF50 (PQF50,k =0:75 =0:08,PQF50,k =0:55 =0:08,PQF50,k =0:25 =0:156)
and QF100 (PQF100,k =0:75 = 0:004,PQF100,k =0:55 =0:007,PQF100,k =

0:25 =0:007) without affecting the model utility significantly
(AccAFS,k =0:75 =0:98,AccAFS,k =0:5 =0:98,AccAFS,k =0:25 =0:98).

Table 3 | ComparisonofAFSwith othermethods on auditingQOandQNO from thePathMNISTdatasetwith a varied number of
samples in the query dataset

QO QNO

Methods 1 10 100 500 1000 2000 1 10 100 500 1000 2000

Independent teacher 1 1 1 1 1 1 1 4.29e−01 6.29e−03 1.40e−13 4.91e−28 1.88e−60

Independent student 1 1 1 1 1 1 1 5.27e−01 5.11e−03 1.29e−10 3.38e−20 7.24e−42

Independent tea-
cher (k = 0.75)

1 1 1 1 1 1 1 5.62e−01 2.76e−03 4.22e−16 5.52e−27 1.62e−60

Independent stu-
dent (k = 0.75)

1 1 1 1 1 1 1 7.32e−01 1.89e−02 1.55e−08 5.74e−16 1.92e−30

AFS w/o Audit (k = 0.75) 1 1 5.26e−01 1.78e−01 2.54e−02 1.17e−03 1 2.95e−01 2.26e−02 9.23e−11 1.04e−19 8.21e−41

AFS (k = 0.75) 1 1 3.90e−01 3.21e−02 6.13e−04 7.19e−06 1 4.98e−01 2.34e−04 4.25e−16 3.95e−31 4.89e−65

Independent tea-
cher (k = 0.5)

1 1 1 1 1 1 1 5.62e−01 5.03e−03 1.50e−12 3.36e−22 2.39e−48

Independent stu-
dent (k = 0.5)

1 8.66e−01 1 8.64e−01 8.64e−01 5.58e−01 1 5.62e−01 4.02e−03 3.01e−10 1.91e−21 7.85e−40

AFS w/o Audit (k = 0.5) 1 1 5.11e−01 2.48e−01 1.24e−02 9.59e−04 1 6.26e−01 1.18e−02 2.99e−11 4.03e−21 2.51e−40

AFS (k = 0.5) 1 1 1.59e−01 3.45e−04 4.06e−06 1.85e−10 1 2.69e−01 9.17e−05 2.98e−16 3.84e−30 1.04e−62

Independent tea-
cher (k = 0.25)

1 1 1 1 1 1 1 3.31e−01 5.98e−04 2.84e−12 1.62e−28 6.34e−52

Independent stu-
dent (k = 0.25)

1 1 8.64e−01 6.95e−01 1.60e−01 4.54e−02 1 1.26e−01 1.24e−06 2.30e−31 2.88e−60 4.73e−109

AFS w/o Audit (k = 0.25) 1 8.66e−01 2.39e−01 3.37e−03 1.01e−05 9.15e−10 1 2.42e−01 3.64e−05 2.55e−24 3.01e−43 1.37e−90

AFS (k = 0.25) 1 8.66e−01 1.40e−01 2.71e−03 1.07e−06 1.63e−12 1 4.37e−01 7.07e−06 2.01e−27 4.45e−53 1.71e−101

SISA (10 shards) 1 1 1 1 1 1 1 6.71e−01 6.58e−03 2.11e−12 9.05e−27 5.85e−49

CF-k (k = 1) 1 1 1 8.63e−01 8.63e−01 1 1 3.75e−01 7.28e−03 9.10e−14 1.07e−21 1.48e−42

EU-k (k = 1) 1 1 1 6.96e−01 7.38e−01 6.92e−01 1 4.73e−01 1.60e−03 4.66e−11 1.47e−23 1.48e−44

The data in the table show the results of auditing QO and QNO on models trained by different methods. The numerical values in the table represent p values. A larger value indicates stronger
membership. p values were calculated using two-tailed Student’s t test.
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Discussion
AFS is a unified method of auditing and forgetting that could effec-
tively forget the information of the target query dataset from the pre-
trained DL model with the guidance of auditing. We designed AFS as a
model-agnostic andopen-sourcemethod that is applicable todifferent
models. As shown in Fig. 5c, AFS couldgenerate a smallermodel, which
requires much less time and GPU memory during the inference
(Tables S1 and S2), by training with a partial training dataset (~50%)
with our KP approach. Moreover, AFS could forget the information of
the query dataset at the expense of an acceptable reduction in the
model performance.

Our experiments on four datasets showed that AFS was general-
ized for datasets of different sizes and forms, includingmedical images
and EHR. Since deep learningmodels with different architectures were
applied to four tasks, we further demonstrated the broad applicability
of AFS to commondeep learningmodels. In addition, our tasks include
both binary classification and multiclassification tasks, which also
suggested that AFS was applicable for tasks with multiple labels.

In practice, the size of the student model could be manually
adjusted when applying AFS to meet specific requirements. In the
initial stages, we could make the student model smaller than the tea-
cher model to achieve model compression while forgetting private
information. However, instead of continuously generating smaller and
smaller student models as knowledge is forgotten, we could maintain
the size of the student model once it reaches a certain threshold (e.g.,
small enough to meet our needs). In doing so, AFS would focus solely
on forgetting knowledge and transferring the remaining knowledge,
without the need for further model compression.

AFS could be incorporated into the workflow of institutions as
shown in Fig. 5d. Patients’ requests for data forgetting may occur in
two different phases. The first phase relates to requests made before
model compression, where patients request the institution to forget
their data from the initial dataset. The second phase pertains to
requests made after model compression, where patients seek to have
their data forgotten from the compressed model. In both cases, AFS
could be employed to forget information from the model. In the first
case, AFS facilitates model compression while performing forgetting,
which ensures that the compressed model not only meets the
requirements for deployment but also respects data privacy by

removing sensitive information. In the second case, AFS could be uti-
lized to forget information from the model without involving model
compression. This allows the institution to respond to data forget
requests while retaining the compressed model’s structure and size.
The institution may stop forgetting and retrain a new model in two
possible scenarios. The first scenario occurs when the number of for-
getting requests becomes too high, leading to a significant degrada-
tion in the current model’s performance that exceeds the institution’s
predefined budget. In such cases, it may be necessary to stop the
forgetting process and initiate the retraining of a new model. The
second scenario arises when the institution introduces new data into
the system. In this case, insteadof continuing to forget specific records
from the existing model, the institution can incorporate the retained
data along with the new data to train a new model.

With current laws that guarantee people the right to revoke their
own data, AFS could help institutions and companies to efficiently
iterate their models to forget individual information at the model
level. However, there are still some shortcomings in the application of
the current version of AFS in the production environment, which
could be the main potential direction of research in the future. Firstly,
the models and data we tested in this study were still not large
enough compared to the data in the real production environment.
Therefore, it is unknown whether scaling AFS to current large models
will cause new problems (e.g. LLM like ChatGPT, which we are unable
to further pursue). Secondly, there are different approaches to audit,
and thus we could add more metrics of auditing to AFS to guide the
forgetting process in the future version. Meanwhile, due to the limita-
tion of auditing, it is still difficult to perform individual-level forgetting,
asweneed to compare the difference in statistical distribution basedon
a fraction of data points, which could be the major possible improve-
ment for the future version of AFS. Though AFS is not applicable for
individual-level forgetting due to limitations of algorithm design,
we can achieve favorable forgetting outcomes when operating on a
batch of query data. In real-world scenarios, companies withmillions of
users can easily meet the required number of the query dataset. Fur-
thermore, when hospitals or companies face continuous requests for
forgetting individual patient data, they can collect and store these
requests, andperform the forgetting as abatchonce the amountofdata
reaches the required threshold. Finally, the current version of AFS could

Table 4 | Comparison of AFS with other methods on forgetting QF and model performance with the PathMNIST dataset

Methods QF100 QF1000 Accuracy F1-score

Independent teacher 1 1 0.8538 0.9885

Independent student 1 1 0.8446 0.9836

Independent teacher (k = 0.75) 1.08e−03 3.11e−30 0.8214 0.9796

Independent student (k = 0.75) 2.35e−02 4.08e−15 0.8396 0.9555

AFS w/o Audit (k = 0.75) 1.08e−03 1.67e−22 0.8682 0.9777

AFS (k = 0.75) 2.25e−05 2.05e−41 0.8560 0.9605

Independent teacher (k = 0.5) 3.74e−03 2.91e−23 0.7100 0.8314

Independent student (k = 0.5) 6.91e−03 2.99e−21 0.7934 0.9533

AFS w/o Audit (k = 0.5) 3.74e−03 4.93e−18 0.8494 0.9697

AFS (k = 0.5) 2.87e−06 4.75e−35 0.8242 0.9575

Independent teacher (k = 0.25) 3.74e−03 2.52e−26 0.7026 0.8282

Independent student (k = 0.25) 1.58e−07 9.05e−57 0.7582 0.9287

AFS w/o Audit (k = 0.25) 3.32e−07 2.05e−41 0.7842 0.9406

AFS (k = 0.25) 3.32e−07 1.84e−56 0.7810 0.9385

SISA (10 shards, QF excluded, k = 0.99 for QF100 and 0.9 for QF1000 2.15e−03 6.73e−29 0.8501 0.9840

CF-k (QF excluded) 1 1.69e−02 0.8506 0.9839

EU-k (QF excluded) 2.35e−02 7.69e−16 0.8328 0.9596

QF100 is the small querydataset containing 100 samples andQF1000 is the large querydataset containing 1000samples.Wepresent thep values of auditingmodels trainedwithdifferentmethods
on QF100 and QF1000 and the model performance including the accuracy and F1-score. p values were calculated using two-tailed Student’s t test.
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not be applicable for regression tasks because the design of auditing
metrics does not work for regression tasks and KP is limited to classi-
fication tasks only. Despite these limitations, we believe that AFS will
make a valuable contribution toward better protection of people’s
privacy and the right to revoke data with the rapid development of
intelligent healthcare.

Methods
The overall framework of AFS
AFS is a unified method to revoke patients’ private data by using
auditing to guide the forgetting process in a negative feedback man-
ner (Fig. 1).

To audit the membership of the query dataset, AFS takes a pre-
trained DL model and the query dataset as inputs, and determines
whether the query dataset has been used for training the target DL
model. This functionwas re-implemented based on EMA41, a published
MIA-basedmethod to evaluate themembershipof a querydataset. Our
re-implementation allows quicker and easier usage of auditing by
introducing parallel computing in each epoch, which suggests a sig-
nificant acceleration for a complete forgetting process and could be
more attractive to institutions to forget larger-scale data (Fig. S2).

To forget the query dataset from a DL model, AFS takes the pre-
trained DL model and the query dataset to be forgotten as inputs, in
which the query dataset has been used to train the DL model. To

Fig. 5 | Performance of forgetting using AFS on four datasets. a The p value of
auditing on a small querydataset and a largequerydataset (QF) and the accuracyof
models trained with different methods, including Original (Independent teacher
trained with the complete training dataset), SISA, CF-k, EU-k, Data Deletion (the
Independent student model trained with partial training dataset and k =0.5), AFS
(w/o Audit) and AFS. p values were calculated using two-tailed Student’s t test.
b The number of parameters for the original large model and the new small model
generated byAFS. c The qualitative evaluation of threemethods, includingOriginal

(Independent teacher trained with the complete training dataset), SISA, CF-k, EU-k,
Data Deletion (the Independent studentmodel trained with partial training dataset
and k =0.5), and AFS on five dimensions (Ability to forget, accuracy, size of dataset
needed for training, size of the generated model and the efficiency of training). A
larger valuemeans a stronger ability to forget, highermodel accuracy, a smaller size
of dataset needed for training, a smaller size of the generated model, and better
efficiency of training. d Illustration of how to incorporate AFS into real-world
applications. The brain icons in d are Designed by macrovector/Freepik.
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effectively forget the information of the query dataset from the pre-
trained DL model, an idea is to transfer the information of the
remaining dataset except for the query dataset from the pre-trained
model to a new model. Therefore, we designed a mechanism called
knowledge purification (KP) by using auditing to guide the forgetting
process to exclude the information of the query dataset while trans-
ferring the remaining information by incorporating the auditing loss
into the training process (Fig. 2). With KP integrated, AFS could gen-
erate a new model, in which the information of the target dataset
should be forgotten under the guidance of auditing.

To provide an applicable solution, we implemented AFS as open-
source software that provides a user-friendly entry point allowing
users to use both functions with only one command. To demonstrate
the generality of AFS,weapplied it to four tasks basedon fourdatasets,
including the MNIST dataset, the PathMNIST dataset, the COVIDx
dataset and the ASD dataset, which have different data sizes (Fig. 3)
and various architectures of deep learning networks.

Dataset preparation
We used four public datasets that were commonly acknowledged in
the machine learning and intelligent healthcare field to demonstrate
the versatility of AFS. For the benchmark experiment, we applied AFS
on MNIST44 and PathMNIST45 from the MedMNIST46 dataset. The
MNIST dataset contains 60,000 training images and 10,000 testing
images of handwritten digits with size 28× 28 and labeled from 0 to 9.
PathMNIST contains 100,000 nonoverlapping image patches from
hematoxylin and eosin-stained histological images and 7180 image
patches from different clinical centers. In total, 9 types of tissues are
involved in the PathMNIST dataset, including adipose, background,
debris, lymphocytes, mucus, smooth muscle, normal colon mucosa,
cancer-associated stroma, and COAD epithelium. All images in
PathMNIST were 224 × 224 (0.5 µmpx−1) and were normalized with the
Macenkomethod47. For the application of AFS in intelligent healthcare,
we used theCOVIDx48 dataset, which contains 13,975 chestX-ray (CXR)
images across 13,870 patient cases, and the autism spectrum disorder
(ASD) dataset for toddlers49, which contains 20 features of 1054 sam-
ples to be utilized for determining influential autistic traits and
improving the classification of ASD cases.

For each dataset, we further sampled partial data as the training
dataset, the testing dataset, and the calibration dataset as below:

MNIST. We randomly sampled 10,000 images as the training dataset
and 10,000 images as the testing dataset. We also randomly sampled
100, 1000, 2000, and 5000 images that are disjoint with the training
dataset as four calibration datasets to illustrate the effect of the cali-
bration dataset of varied sizes on auditing and forgetting.

PathMNIST. We randomly sampled 10,000 images as the training
dataset and 5000 images as the testing dataset. We also randomly
sampled 1000 images that are disjoint with the training dataset as the
calibration dataset.

COVIDx. We randomly sampled 5000 images as the training dataset
and 1000 images as the testing dataset. We also randomly sampled
1000 images that are disjoint with the training dataset as the calibra-
tion dataset.

ASD. We randomly sampled 500 images as the training dataset and
100 images as the testing dataset. We also randomly sampled 100
images that are disjoint with the training dataset as the calibration
dataset.

For all four datasets, we randomly sampled partial data from the
training dataset with percentage k from {0.25, 0.5, 0.75} as the training
dataset for knowledge distillation (KD) and AFS.

In addition, we prepared query datasets with different sizes N
from {1, 10, 100, 500, 1000, 2000}. A query dataset that completely
overlapped with the training dataset is labeled as QO, while the query
dataset that is completely disjoint with the training dataset is labeled
QNO. To further understand the effect of the purity of the query
dataset, we also prepared the query dataset called QM with a k per-
centage of the query dataset to be overlapped with the training data-
set. Finally, for the query dataset designed to be forgotten, we labeled
it as QF. QO, QNO, QM, and QF were all sampled randomly from the
complete dataset and all reported values were the average of 5 repli-
cate experiments.

Deep learning models and experiment setup
To present the generalizability of AFS toward various DL models, we
adopted different architectures for each of the four tasks, including
the multilayer perception50 (MLP), the convolutional neural network
(CNN)51 and ResNet52. There were a large DL model and a small DL
model for each task, where the large model refers to the original pre-
trainedmodel and the smallmodel is the newmodel generatedbyAFS.

For the MNIST dataset, we used MLP with 671,754 parameters as
the teacher model and 155,658 parameters as the student model to
achieve the 10-class classification task.

For the PathMNIST dataset, we adopted CNN with 21,285,698
parameters as the teacher model and 11,177,538 parameters as the
student network for the 9-class classification task.

For the COVIDx dataset, we took ResNet34 with 21,285,698
parameters as the teacher model and ResNet18 with 11,177,538 para-
meters as the student network to achieve the binary classification of
healthy people and patients.

For the ASDdataset, weused theMLPwith 3586 parameters as the
teachermodel and theMLP with 898 parameters as the studentmodel
for the binary classification of autism in toddlers.

During model training, the number of epochs was fixed to 50, the
learning rate was set to 1e–5 and the Adam optimizer was used. A
workstation with 252 GB RAM, 112 CPU cores and 2 Nvidia V100 GPUs
were adopted for all experiments. The AFS method was developed
based on Python3.7, PyTorch1.9.1 and CUDA11.4. A detailed list of
dependencies could be found in our code availability.

Audit the membership of query dataset
EMA41 is designed as a 2-step process. In the first step, the best
threshold for each metric is selected to optimize ðTPRðtÞ+TNRðtÞÞ=2
based on the calibration dataset as shown in Algorithm 1. Once the
thresholds for all metrics are selected, themembership of each sample
in the query dataset will be confirmed as at least one metric is larger
than the corresponding threshold. In total, three metrics, including
correctness53, confidence54,55, and entropy56,57, were adopted to further
calculate the p value, which is the key audit metric in AFS as proposed
in the previous work41,58. The details for calculating correctness, con-
fidence, and entropy are as below:

Correctness: the target model is trained to predict correctly on
training data and may not generalize well on test data. Thus, we can
define the correctness as in Eq. (1):

Icorrectness F, x, yð Þð Þ=1fargmaxiF xð Þi = yg ð1Þ

where F is the deep learning model, x is the input data, F(x) is the
output logits, y is the label, and 1 is the indicator function.

Confidence: the target model is usually more confident in pre-
dictions on training data, but less confident in test data. Thus, we can
define confidence as in Eq. (2):

Iconfidence F , x, yð Þð Þ=1fF xð Þy ≥ τyg ð2Þ
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where F is the deep learning model, x is the input data, F(x) is the
output logits, y is the label, F xð Þy is the output logits for label y, τy is a
threshold for the logit for label y, and 1 is the indicator function.

Entropy: the target model is trained by minimizing the prediction
loss over training data and usually has a larger prediction entropy on a
test sample. Thus, we can define entropy as in Eq. (3):

Ientropy F, x, yð Þð Þ=1 �
X

i

F xð Þi log F xð Þi
� �

≤ τ̂y

( )
ð3Þ

where F is the deep learning model, x is the input data, F(x) is the
output logits, y is the label, F xð Þi is the output logits for class i, τ̂y is a
threshold, and 1 is the indicator function.

Once the membership of all samples in the query dataset is con-
firmed in the previous step, the query dataset will be further evaluated
to determine whether the query dataset has been used to train the
target pre-trainedDLmodel. A two-sample statistical test is adopted to
evaluate the query dataset based on the sample-wise membership and
an all-one vector. The p value of the two-sample statistical test is used
as the output of auditing. Given a user-defined threshold α, if p < α,
then users could conclude that the query dataset was not used for
training the target DLmodel. EMAwas re-implemented and integrated
into AFS to allow easy and fast auditing.

Audit-guided forgetting of query dataset with AFS
Forgetting aims to remove the remembered information of the query
dataset from the target DL model. Similar to knowledge distillation

(KD), a teacher-student paradigmwas also adopted in AFS, but with an
additional requirement to selectively forget information associated
with the data we want to forget. Thus, we designed an approach called
knowledge purification (KP), meaning purifying the knowledge in the
teacher model (the original pre-trained model), discarding the infor-
mation related to thedata that needed tobe forgotten and transferring
the purified information into the student model (the new model). AFS
unified auditing and forgetting into a circular process to effectively
enhance the unlearning in a negative feedback manner.

As shown in Fig. 1, during each epoch of training, the training data
will be fed into both the teacher model and the student model, while
the data to be forgotten will be audited on the student model. Our
main goal is to transfer the knowledge from the teacher model to the
student model while forcing the student model to reject the infor-
mation associated with data to be forgotten. In order to achieve that,
we added the audit loss into the total loss, thus allowing the student
model to accept partial knowledge from the teacher model and
achieve KP as shown in Algorithm 2.

Evaluation metrices
Since all four tasks are eithermulti-classes classification tasks or binary
classification tasks, we adopted the accuracy and F1-score as the eva-
luation metrics as in Eqs. (4) and (5):

Accuracy =
TP+TN

TP+TN+FP+FN
ð4Þ

Algorithm 1. Infer thresholds

Algorithm 2. AFS
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F1� score=
2TP

2TP+FP +FN
ð5Þ

where TP represents true positives, TN stands for true negatives, FN
represents false negatives and FP stands for false positives.

To evaluate the membership of the query dataset, the p value of
the two-sample statistical test was used as mentioned previously.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All four datasets used in this work are publicly available. The MNIST
dataset is available at https://www.kaggle.com/datasets/hojjatk/mnist-
dataset. The PathMNIST dataset is available at https://medmnist.com/.
The COVIDx dataset is stored at https://www.kaggle.com/datasets/
andyczhao/covidx-cxr2?select=competition test. The ASD dataset can
be accessed at https://www.kaggle.com/datasets/fabdelja/autism-
screening-for-toddlers. All data supporting the findings described in
this paper are available in the article and in the Supplementary Infor-
mation and from the corresponding author upon request. Source data
are provided with this paper.

Code availability
The AFS software is publicly available at https://github.com/
JoshuaChou2018/AFS and https://doi.org/10.5281/zenodo.8275769.
SISA is implemented based on the codes at https://github.com/
cleverhans-lab/machine-unlearning.
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