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Predicting the antigenic evolution of
SARS-COV-2 with deep learning

Wenkai Han1,2,9, Ningning Chen 1,2,9, Xinzhou Xu 3,4,9, Adil Sahil1,2,
Juexiao Zhou1,2, Zhongxiao Li 1,2, Huawen Zhong2, Elva Gao5, Ruochi Zhang6,
Yu Wang6, Shiwei Sun7,8 , Peter Pak-Hang Cheung 3,4 & Xin Gao 1,2

The relentless evolution of SARS-CoV-2 poses a significant threat to public
health, as it adapts to immune pressure from vaccines and natural infections.
Gaining insights into potential antigenic changes is critical but challenging due
to the vast sequence space. Here, we introduce the Machine Learning-guided
Antigenic Evolution Prediction (MLAEP), which combines structure modeling,
multi-task learning, and genetic algorithms to predict the viral fitness land-
scape and explore antigenic evolution via in silico directed evolution. By
analyzing existing SARS-CoV-2 variants, MLAEP accurately infers variant order
along antigenic evolutionary trajectories, correlating with corresponding
sampling time. Our approach identified novel mutations in immunocompro-
mised COVID-19 patients and emerging variants like XBB1.5. Additionally,
MLAEP predictions were validated through in vitro neutralizing antibody
binding assays, demonstrating that the predicted variants exhibited enhanced
immune evasion. By profiling existing variants and predicting potential anti-
genic changes, MLAEP aids in vaccine development and enhances prepared-
ness against future SARS-CoV-2 variants.

As thenumber of infection cases increased and the SARS-COV-2 spread
globally, novel mutations in the virus genome emerged1–4. At the time
of April 2022, there are more than one million variants in the virus
genome identified and uploaded to the Global Initiative on Sharing
Avian Influenza Database (GISAID). The mutations often implicate the
changes to the SARS-COV-2 properties3. Although most mutations
decrease the virulence and transmissibility of the virus5, some indivi-
dual or combinatorial mutations substantially improve the transmis-
sibility with enhanced cell entry efficacy6, or ablate the neutralizing
antibodies response elicitedby infectionor vaccine1,7, resulting inhigh-
risk variants. For example, the Alpha (B.1.1.7) variant of concern (VOC)

spread worldwide through a higher human ACE2-binding affinity and
transmissibility than the original Wuhan strain8. The Beta and the
Gamma lineage abolished the neutralizing antibodies elicited by
approved COVID-19 vaccines9. The Delta variant became a dominant
strain worldwide with the increased transmissibility and morality10,11.
Recently, the heavily mutated Omicron variant caused new waves due
to the extremely high rate of spread and the ability to evade the
double-vaccinated person12.

A substantial fraction of neutralizing antibodies, including
monoclonal antibodies and those induced by the vaccines, target the
spike receptor-binding domain (RBD)13–15. Antibodies targeting the
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RBD have been divided into four categories according to their binding
epitopes16. Class 1 and class 2 antibodies bind the surface of the
receptor-binding motif (RBM) and thus compete with ACE2 for RBD
binding. Mutations in the RBM region, in turn, decreased neutraliza-
tion by these antibodies. Class 3 antibodies bind the opposite side of
theRBM,contain lessoverlapwith theACE2-binding footprint, provide
the potential for synergistic effects when combined with Class 1 and 2
antibodies for intercepting ACE2 binding17. Class 4 antibodies target a
highly conserved region among sarbecoviruses and thus are generally
more resistant to the variants18. However, emerging viral lineages such
as Omicron and BA.2 can still lead to a substantial loss of
neutralization19.

Understanding the role of the mutations and how they are linked
to transmissibility and immune escape are thus of great importance.
There have been an expanding set of analyses characterizing these
problems5,18,20–23. Starr et al.5 and Greaney et al.18 performed deep
mutational scanning (DMS) on the entire Spike RBD sequences of
SARS-COV-2 on the yeast surface to determine the impact of single-
position substitutions on the binding ability to ACE2 and monoclonal
antibodies. These assayed experiments provide a unique resource for
understanding the properties of variants. However, the wet-lab
experiments are resource and time-consuming, and cannot be scaled
to the large protein sequence space. Maher et al.23 characterized the
potential risks of the single-position substitutions with a computa-
tional model and forecasted the driver mutations that may appear in
emergingVOCs.Despite their effectiveness inmodeling the risks at the
single-mutant level, the newly emerging VOCs (e.g., Delta, Omicron)
often possess multiple mutations in the RBD region, which directly
influences the ACE2 binding and antibody escape. For example, the
Omicron variant contains 15 mutations in the RBD region and obtains
considerable antigenic escape ability24. Moreover, the effects of
mutations are context-dependent, such that the epistatic interactions
among the mutations limit the application scenario of the single-
mutant-based methods25.

The sequence space of protein variants grows exponentially when
multiple mutations are considered, while measuring the functionality
of the variant sequences far exceeding the capacity of wet-lab
experiments. Machine learning methods have been proposed for sol-
ving the problem26–28. Alexander et al.29 trained a large-scale transfor-
mer model with the self-supervised protein language modeling
objective, while the model can infer the effects of mutations without
supervision. Chloe et al.30 combined linear regression with the Potts
model, resulting in a data-efficient variant fitness inference model.
These models have been proven to be effective in the protein engi-
neering field for inferring the fitness landscape of proteins.

Inspired by these tools, Hie et al.20 showed that language models
trained on a set of evolutionarily related sequences are capable of
predicting the potential risks of SARS-COV-2 variants with multiple
mutations, and Karim et al.22 further combined the language model
scorewith structuralmodeling tomonitor the risks of existing variants.
These computational tools can work as high-risk variant monitors and
help us predict the risks of emerging variants. However, as these
methods focus on prediction and rely on existing data, they do not
provide detailed views for ‘perspective’ variants and antigenic evolu-
tionary potential. Taft et al.21 performed deep learning on the RBM
sequences and built a predictive profile for the variants in ACE2
binding and antibody escape for class 1, 2, and 3 antibodies. The pro-
posed framework works quite well in finding prospective mutations,
but they still have limitations: the mutations are found by brute-force
search, so they only focused on a small subset of the RBD region,
missed a large part of the Class 3 antibody epitopes, and did not take
the class 4 antibodies into consideration.

In thiswork, wepresented theMLAEP, built upon the existing data
and approaches to forecasting the combinatorial mutations in the
entire RBD region that contains high antigenic evolutionary potential

andmayoccur in the future.Wehypothesized that under high immune
pressure, the virus would tend to escape the antibody neuralization
over a short-term time scale, and therefore the forecasting problem
transforms into a search problem: starting from an initial sequence, it
searches for a variant sequence within some edit distance range that
has an improved antibody escape potential without losingmuchACE2-
binding ability. With the DMS datasets that directly measure the
binding affinity of RBD variants towards ACE2 and eight antibodies
from four classes, we built a multi-task deep learningmodel that could
simultaneously predict the binding specificity of the variants towards
the ACE2 and antibodies. Furthermore, we used existing variants with
their sampling date from the GISAID database to validate our
hypothesis: we found a surprisingly high correlation between our
model scores and the variants’ sampling time (Spearman r =0.65,
p < 1e-308). Next, with our model as the scoring function, we used the
genetic algorithm31,32 to generate synthetic RBD variants with high
ACE2 binding and antibody escape potential. Interestingly, the in silico
directed evolution shares similar mutations with the adaptive evolu-
tion in immunocompromised COVID-19 patients33–35 and newly emer-
ging variants like XBB.1.5. Finally, we conducted in vitro neutralizing
antibody binding assay to verify the ability of MLAEP to accurately
forecast variants with high immune evasion potential.

Results
Overview of MLAEP
We first developed and trained a multi-task deep neural network
model capable of predicting the variant RBD binding specificity
towards the ACE2 and antibodies from four classes, as shown in Fig. 1.
The model receives two inputs: the variant RBD sequences and the
ACE2/antibody 3D structures, and outputs the binding specificities of
the two inputs. The model is then trained with a multi-task objective
function to predict the binding specificities of the variant sequences
towards all targets simultaneously.

We fine-tuned the ESM-1b (evolutionary scalemodeling) language
model29 for the sequence feature extraction. The model is pre-trained
on ~27 million nature protein sequences in the UniRef50 database36.
Fine-tuning the model has been proven to be effective for a broad
range of downstream tasks, including biophysical properties predic-
tion, structure prediction, and mutation effects prediction. With the
ESM-1b model, the amino acid sequences are converted into a dense
vector representation. For the ACE2/antibodies structures, we first
transformed the 3D structures into graphs based on their contact
maps and biophysical properties, then used the structured
transformer37 for the structural feature extraction. With the two
models as feature extraction modules, we added nine parallel linear
classification layers to learn the sequence to function mapping con-
ditioned on the binding target structures (Fig. 1a). As we havemultiple
binding targets for the variants, we used a hard-parameter sharing
scheme to perform multi-task learning, where all modules share the
same parameters across all nine tasks. Then, we trained the entire
framework in an end-to-end manner. Finally, the model learns how to
predict binding specificity for ACE2 and eight antibodies. Given an
input RBD variant sequence, our model outputs nine scores corre-
sponding to the ACE2 and eight antibodies. We defined the average of
eight antibody scores as the predicted antibody escaping potential.

Our key hypothesis is based on antigenic evolution: the future
viral variants tend to have a higher antibody escaping potential with-
out losing much ACE2-binding ability under high immune pressure.
Thus, the antibody/ACE2-binding specificity learned by our model can
be used to provide a meaningful direction in searching for novel var-
iants that may cause future concern. Inspired by the progress in the
machine learning-guided protein engineering field26,27, we used the
trained multi-task model as the scoring function (Fig. 1a), took the
average prediction scores from all nine tasks as the fitness score, and
used amodified genetic algorithm for searching for novel variantswith
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improved fitness (Fig. 1b). The genetic algorithm is inspired by the
process of natural selection, which iteratively evolves a group of can-
didates towards better fitness. The population of each iteration is
called a generation. In each generation, the fitness of the candidate
sequences is evaluated with the trained model. Then we filtered the
populations by selecting the ones with higher fitness with higher
probabilities for breeding the next generation (Fig. 1c). Random
mutations and crossover are also introduced to better explore the
search space. Genetic algorithm is known for performing well in sol-
ving combinatorial optimization problems, thus fitting our needs in
searching for novel variants. More details can be found in Methods.

The effectiveness of the multi-task learning model
MLAEP follows the machine learning-guided directed evolution para-
digm, while the quality of generated sequences largely depends on the
sequence-to-function model. First, we validated the generalization
ability of the models to newly seen variants with five-fold cross-valida-
tion. We collected and cleaned nine deep mutational datasets contain-
ing 19,132 variant sequences and their corresponding binding
specificities towards ACE2 and eight antibodies from four functional
classes. (Methods) We then compared a range of models specifically
designed for protein engineering and assessed their classification per-
formance in classifying the binders and non-binders (Methods, Sup-
plementary Fig. 1) from the variant sequences, including the augmented
Potts30 model, the global UniRep38 model, the eUniRep26 model, the
convolutional neural network (CNN), the long short memory neural
network (LSTM), the recurrent neural network (RNN), the linear
regression model, the support vector machine (SVM), the random

forest and our model. The dataset is imbalanced regarding the number
of positive and negative samples for all nine tasks. Thus, we reported
the macro precision, macro recall, and macro-F1 score to add more
weights to theminor classes. Combinedwith the structure features, our
model outperforms the other advanced methods in predicting the
effects of mutations in all nine tasks (Fig. 2a, Supplementary Figs. 2, 3,
Supp Table 1). As a result, we focused on our model in the downstream
analysis.Wealsoperformedanablation study forourmodel to show the
importance of each module. We found that both the fine-tuning step
and the structure representations improves the overall model perfor-
mance (Supplementary Fig. 4). We also conducted external validation
experiments using several deep mutational scanning datasets39,40 in
addition to variant RBDs, and found that our model performed com-
parably and consistently well across all tasks (Supp Table 2).

To further validate the model’s predictions for immune escape,
we used the in vitro pseudovirus neutralization test (pVNT) datasets41

that measured the cross-neutralizing effect of 17 RBD monoclonal
antibodies against pseudoviruses expressing the Spike protein of
selected variants of concern (VOCs). The pVNT assay reported the
observed fold change in the IC50 of the antibody response for these
VOC-derived pseudoviruses, with lower fold change score indicating
greater immune evasion compared to the wild-type (Wuhu-1) refer-
ence pseudovirus. Across all pseudoviruses and antibodies tested, we
found surprisingly high correlations (Fig. 2b, Supplementary Fig. 5,
Supp Table 3) between the predicted antibody escape potential and
the log fold change in the IC50.

The Evo-velocity42 enables the inference of evolutionary dynamics
for proteins with a deep learning model. It was built upon the premise

Fig. 1 | Overview of the MLAEP framework. a The multi-task learning model. We
collected and cleaned the RBD variant sequences and their corresponding binding
specificity to theACE2 andeight antibodies. Then, the sequences and the structures
of their binding partners were fed into the deep learning model with the multi-task
learning objective. b The genetic algorithm. In silico-directed evolution was

performed to navigate the virtual fitness landscape defined by the nine scores from
the multi-task model. The generation loop was repeated multiple times until the
desired functionality was reached. c These generated sequences were then sub-
jected to validation experiments for evaluating their functional attributes.
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that global evolution occurs through local amino acid changes and
leveraged protein language models to model the local rules of evolu-
tion (Methods). We next assessed our model’s ability in inferring the
evolutionary trajectory of the existing RBD sequences using the Evo-
velocity. We used the existing SARS-COV-2 RBD sequences from the
GISAID database across a time scale of around 27 months, from Dec.
2019 to Mar. 2022. The existing GISAID variant sequences were first
transformed into embeddingswith ourmulti-taskmodel.On top of the
embeddings, we assigned directions among them based on the chan-
ges in the average score predicted by our model, which forms the
evolutionary “vector field”. We visualized the embeddings in the two-
dimensional space with the Uniform Manifold Approximation and
Projection (UMAP)43 (Methods). The variants of concern, including
Alpha, Beta, Delta, and Omicron, were mapped into different clusters,
and the velocities among these variants matched well with the known
evolutionary trajectory (Fig. 3a). Despite the model being trained only
with the RBD sequences, the pseudo time inferred with our model had
a Spearman correlation of 0.55 (p < 1e-308) with the known variant
sampling time (Supplementary Fig. 6). While using the ESM-1b (the
Evo-velocity default setting) model, the score dropped to −0.38
(p = 1.05e-243) quickly (Supplementary Fig. 7). We noted that a large
set of mutations occur outside the RBD region; this may explain the
weak correlation between the ESM-1b model pseudo time and the
sampling time. Longer sequence length (e.g., using the entire Spike
protein region) would lead to better performance for the ESM-1b
model42. We attempted to explain our model’s unique ability to infer
pseudo time with only the RBD region. We explored the effectiveness
of labels in our supervised learning, as it provides alternative direc-
tions rather than the language model preference42,44. Interestingly, we
found that the model prediction scores alone have an even higher
Spearmancorrelation scoreof 0.65 (p < 1e-308)with the sampling time
(Fig. 3b) compared with that of the inferred pseudo time, while for the
predicted antibody escape potential, the Spearman correlation is 0.67
(p < 1e-308). These findings verify our assumptions: under the immune
selection pressure, the virus evolves in the direction of immune
escape, and our model can capture the antibody escape potential of
the viral variants.

We next assessed the antigenic evolution on a short time scale by
comparing the model predictions against the sampling time (Fig. 3c,
Supplementary Fig. 8). We evaluated three types of scores, the ACE2-

binding score, the antibody escape potential, and the weighted aver-
age of the two scores. The predictiveness of the antibody escapes
score increases fromnearly non-informative early in the pandemic to a
stronger correlation during the Omicron wave. It also gains predic-
tivenesswith the emergence and spread of Alpha variants in Early 2021
but subsequently loses the predictiveness alongwith the emergence of
other variants. We noted that the antigenic evolution For the ACE2-
binding probability score, it tends to becomemore informative during
the first year, while soon it becomes non-informative when the new
VOC like Delta and Omicron emerged. These results suggests that the
antigenic evolution happens along with the infection waves.

We then examined the model sequence representations against
the binding specificities. We found that after the training, there are
strong correlations between embeddings’ primary and secondary axis
of variation and the binding specificities for all nine targets (Fig. 3d,
Supplementary Fig. 9). The correlations are observed for both ACE2
binding and antibody escape, suggesting that our multi-task learning
strategies enable the model to learn the functional properties simul-
taneously. Given that the variant sequence embeddings are shared
across tasks, this suggests that ourmodel split the sequences based on
an antigenic meaningful sense of binding preference.

In summary, our model effectively infers the immune escape
potential and the ACE2-binding specificity, while the predicted scores
correlate positively with the real-world sampling time, especially for
the newly emerging Omicron wave. Taken together, we hypothesize
that our model can work as a good scoring function for searching for
high-risk mutations and the corresponding variants.

In silico-directed evolution as a predictive tool
With ourmodel as the scoring function, we used the genetic algorithm
to search for novel RBD variant sequences with high antigenic evolu-
tionary potential. The search process consists of selecting an initial
sequence from the GISAID database, generating and selecting “better-
than-initial” sequences with the genetic algorithm to produce 38,870
putatively high-risk variants within a 15 mutations “trust radius” of the
initial sequence (Methods). We performed the search process for the
sequences in the GISAID database from 1 January 2022 to 8 March
2022, yielding a total of 971 distinct sequences. We then visualized the
generated sequences together with the existing sequences using the
distance-preservingmultidimensional scaling plot45 (Fig. 4a).While the

Fig. 2 | Performance evaluation and in vitro pVNT experimental data valida-
tion. aModel performance comparison for the classification of ACE2 and antibody
binding specificity across different algorithms. Including our model, augmented
Potts model, eUniRep model, gUniRep model, CNN, RNN, LSTM, linear regression,
SVM, and random forest. The details of model implementation are given in

Methods and performance metrics were calculated according to the equations
provided in the Methods. b Validation of the predicted immune escape potential
using the class 4 monoclonal antibody-based pVNT assay data (Antibody 10–40).
The x axis indicates themodel predicted variant escape potential, while the y axis is
the log fold change of the VOCs compared with the wild type.
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sequences from the deep mutational scanning experiments only
occupy a small region around the wild type sequences, the prevalent
variants (e.g., Omicron) locate in different regions, far from the wild
type. The sequences searched with our model shown are diverse, lar-
gely expanding the sequence space.

Compared with the seed sequences, the synthetic sequences
generated by our model include key mutations for ACE2 binding and
antibody escape. To visualize the difference and further explore the
patterns of the generated mutations, we constructed the position
frequency matrix (PFM) for the two sequence sets and calculated the
Kullback-Leibler divergence (KL divergence) for each position based
on the two PFMs (Methods). Figure 4b and Supplementary Fig. 10
provides structure-based visualizations and projects the Kullback-
Leibler divergence per site onto a crystal structure of the RBD (PDB id:
6m0j). As an alternative representation, Fig. 4c provides a probability-
weighted Kullback-Leibler logo plot46 for the top 50 most divergence
sites, where the total height of the letters depicts the KL divergence of

the site, while the size of the letters is proportional to the relative log-
odds score and observed probability (Methods). The logo plot for all
positions can be found in Supplementary Fig. 11. Enriched amino acids
locate at the positive side of the y-axis and depleted amino acids locate
at the negative side.

The logo plot shows that the mutations searched by our model
largely overlap with the antibody escape maps. For example, Y453,
F456, andA475 are key sites for class 1 antibody escape18, while they are
also present in many synthetic variant sequences. Mutations escaped
class 2 antibodies at sites E484, F490, and P49118. The logo plot shows
that these sites ranked high as “active sites”. Class 3 antibodies, which
bind the opposite side of the receptor-binding motif, tend to be
escapedby sites likeN437,N448, andQ49818, whichare also vulnerable
sites suggested by the model. Class 4 antibodies bind to a conserved
motif among the sarbecorviues, far away from theRBM.Ourmodel still
captures the conservation and assigns mutations to the motif. How-
ever, some sites with a large KL divergence do not locate in the epitope

a b

c d

PC
2

PC1

Fig. 3 | Multi-task model captures the antigenic evolutionary potential. a The
landscape of SARS-COV-2 RBD variant sequences (obtained from GISAID), repre-
sented as a KNN-similarity graph (with the darker blue region represents less recent
date, e.g., 2019, and yellow represents more recent date, e.g., 2022). The gray lines
indicate graph edges, while the colored points are sequences with the known
sampling time. The streamlines among the points show a visual correlation
between model-predicted scores and the known sampling time. b Use the average
score of our model to visualize the landscape. The landscape is colored by the
modelprediction scorewith darker colors represent lower scores and lighter colors

represent higher scores. c Spearman correlation overtime for the model predic-
tions, including the ACE2-binding score, immune escape potential, and the
weighted average of the two in a time window of previous three months for each
sampled date. (From February 2020 to February 2022) d Principal component
analyses of the sequence’s representations from our model, colored by the
escaping/binding ability towards COV2-2832, COV2-2165(class 1 antibody), COV2-
2479, COV2-2500 (class 2 antibody), COV2-2096, COV2-2499 (class 3 antibody),
COV2-2677, COV2-2094 (class 4 antibody) and ACE2.
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regions. This has several explanations. Firstly, it is clear that some top
sites (e.g., L368, C480) arenot the direct binding sites but theproximal
contact sites in the structures,whichmay influence the binding as well.
Secondly, as there are epistasis relationships among the mutations,
some combinatorial mutations may influence the RBD function non-
linearly and then modify the antibody escape, which is not directly
revealed by the epitope map. Moreover, these non-epitope sites with
high KL divergence need to be taken into consideration as they may
perform an important role in future variants. Another concern is that
some sites in the epitope region have a low KL divergence, one pos-
sible explanation is that these sites have no tolerate mutations, for
example, G416 and R457. Another explanation is that some mutations
at antibody-contact sites do not directly influence antibody binding.

The synthetic variant sequences share similar mutations with the
chronic SARS-COV-2 infections. A reverse mutation, R493Q, for
example, was found in a persistently infected, immunocompromised
individual47. Other mutations found by our model, like E340K48,
E484T33, G485R49, and F490L/E484G50, are also found in immuno-
compromised patients treatedwithmonoclonal antibodies.Moreover,
the unique mutations found in the emerging variants, BA.4/5, the
L452R, F486V, and the reverse mutation R493Q, are captured by our
model. For the newly emerging variants like XBB.1.5, the key mutation
that lead to increased transmissibility and immune escape, F486P51, is
also captured by ourmodel (Supplementary Fig. 11). This suggests that
our model could be used for finding novel mutations that may occur
naturally. A detailed list of the found mutations in compromised
patients is available in Supp Table 4. We next evaluated the immune
evasion potential posed by the variant sequences using Evo-velocity
analysis and viral languagemodel risk inference, followed by structure
modeling and antibody-antigen docking. The computational valida-
tion experiments suggest that the generated variants have high

immune escape potential. Further details can be found in the Sup-
plementary Note 1.

In vitro validation of novel mutations found by MLAEP
Having generated the synthetic sequences and found interesting single
mutations, it is thus crucial to validate the risk and the immune evasion
ability of combinatorial novel mutations using in vitro neutralizing
antibody binding assay, especially for those that cannot be predicted
with a linear additive model. Though the Omicron and its sub lineage
are desired targets, they already exhibit high antibody escape abilities
on the eight antibodies we selected for training our model, making it
difficult to distinguish the effectiveness of novelmutations induced by
MLAEP. To envision the differences, we used the RBD sequence of the
Delta variant as the initial state and ran the entire framework again to
generate and select “better-than-Delta” sequences. Our goal was to
find possible antigenic evolutionary pathways for Delta that lead to
high immune evasion.

We generated 3876 putatively high-risk variants using MLAEP and
selected eight variants (Fig. 5, Supplementary Fig. 12) with unique
immune evasion properties, including epistatic and non-epitope
mutations. For example, the RBD3 contains seven mutations com-
pared to the wild type, but all the single mutations are experimentally
validated18 to be ineffective at evading the eight antibodies we used.
However, ourmodel predicted that theRBD3wouldhavehigh immune
evasion. The RBD4does not containmutations on the Class 4 antibody
epitope, but our model predicted that it would escape Class 4 anti-
bodies. The selection criteria are detailed in Supplementary Table 5.

We first expressed and purified the eight neutralizingmonoclonal
antibodies and ten RBDs (including wild type, Delta, and eight syn-
thetic RBD we generated) bearing different mutations. We tested dif-
ferent combinations of neutralizing antibodies and RBD variants in a

a b

c
Kullback-Leibler divergence

Fig. 4 | Overview of the synthetic sequences. a Distance-preserving multi-
dimensional scaling plot illustrates synthetic sequences’ diversity compared to
existing variants and deepmutagenesis sequences. A scale bar of threemutations is
shown. b, c the differences between the initial sequences and the synthetic
sequences.bThe surface of theRBDprotein, coloredby theKLdivergencebetween

the initial sequences and the synthetic sequences. Colored outlines indicate the
epitope structural footprint. cThe top 50 siteswith the highest KLdivergence value
are selected for visualizing the difference between the generated sequences and
the existing sequences. Enriched amino acids are located on the positive side of the
y axis and depleted amino acids are located on the negative side.
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Fig. 5 | Epitopemutations confer RBD resistance to the binding of neutralizing
mAbs. HTRF-based binding assay of wild-type and mutant RBD proteins against
two representative anti-RBD monoclonal antibodies from four classes, including
COV2-2832 and COV2-2165 (class 1 antibody), COV2-2479 and COV2-2050 (class 2
antibody),COV2-2096 andCOV2-2499 (class 3 antibody), aswell asCOV2-2094 and

COV2-2677 (class 4 antibody).ΔF%valueswere calculated from rawdata andfit into
dose–response curves, and the IC50 values were listed side by side. Data are pre-
sented as mean values ± standard deviation (n = 3 independent experiments).
Source data are provided as a Source Data file.
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Homogeneous Time-Resolved Fluorescence (HTRF) based antigen-
antibody binding assay. In our HTRF-based binding assay, the wild-
type and Delta variant RBDs exhibited high binding efficacy against
different neutralizing monoclonal antibodies, with the IC50 falling in
between 0.2 nM and 1 nM (Fig. 5). Notably, the Delta variant RBD
showed no binding interaction to COV2-2096 (Fig. 5), consistent with
the literature that the L452R18 mutation on Delta variant confers eva-
sion ability against this neutralizing antibody. Intriguingly, all our
predicted synthetic variants exhibited reduced or diminished binding
efficacy against all four classes of neutralizing antibodies targeting
different epitope regions (Fig. 5). Specifically, RBD4, RBD7, RBD8, and
RBD9 exhibited evasion or reduced binding to COV2-2094 and COV2-
2677, two representative class 4 neutralizing monoclonal antibodies,
even without bearing any mutations in the class 4 epitope region. We
also found that RBD8 could completely escape class 3 antibodies
(COV2-2096 and COV2-2499) without bearing mutations in the class 3
epitope region, suggesting that epistasis relationship play significant
roles in the immune evasion, and such relationships could be captured
by our deep learning model. The RBD5, RBD7, and RBD8 variants
retained sensitivity to class 1 (COV2-2832, COV2-2165) and class 4
(COV2-2094,COV2-2677) antibodieswith similar IC50 values compared
to wild-type RBD, but their binding efficacy to these neutralizing
antibodies were reduced by large degrees. Overall, the synthetic var-
iants and the novel combinatorial mutations generated from MLEAP
exhibited a high potency for immune evasion, suggesting MLAEP
captures the antigenic evolutionary potential.

Discussion
In this paper, we proposed a machine learning-guided antigenic evo-
lution prediction paradigm for forecasting the antigenic evolution of
SARS-COV-2. We trained a multi-task deep learning model to predict
ACE2/antibody binding specificity using variant sequences and bind-
ing target structures. Predicting ACE2 binding specificity is a relatively
easy task, as one can capture the binding specificity using unsu-
pervised learning-based models29. However, predicting antibody
binding specificity is much more challenging and less explored in the
literature. Through various validation experiments, we showed that
our model can predict the antigenic evolutionary potential resulting
from high immune pressure. Combinedwith the genetic algorithm,we
conducted in silico-directed evolution using the model scores. The
resulting synthetic sequences displayed high immune evasion poten-
tial, which we further validated using in silico computational tools and
in vitro neutralizing antibody binding assay. MLAEP captures muta-
tions that also happen in chronic SARS-COV-2 infections and emerging
variants like BA.4/5 and XBB.1.5. In addition, MLAEP forecasts novel
combinatorial mutations that affect antibody binding beyond epitope
regions. While we used the genetic algorithm to search for novel var-
iants, other search algorithms like hill-climbing52, simulated
annealing53, and reinforcement learning54 could also be combinedwith
MLAEP. The multi-task learning model could be also replaced with
other mutation effects prediction models30.

Deep learning models can learn high-order epistasis relationships
among the multiple mutations28,29. Our multi-task model, meanwhile,
can capture such relationships and work as a monitor for predicting
the escaping potential of newly emerging variants, particularly heavily
mutated variants. Our in vitro HTRF-based high throughput assay
verified that MLAEP is able to forecast epistatic and non-epitope
mutations, thus expanding our understanding and ability to predict
the virus evolution.When combinedwith the Evo-velocity analysis, our
model helps to reveal the evolution trajectory of existing sequences
and enables the discovery of high-risk variants that may appear in the
future. The results suggest that the in silico-directed evolution can lead
to the prediction of in vivo virus evolution. Consequently, MLAEPmay
enable the support of public health decision-making and guide the
development of new vaccines. Besides, our approach could also be

applied to rapidly evolving viruses and other potential outbreaks, such
as antibiotic resistance55.

An important property of MLAEP is that we focused on predicting
the directionality of the mutation effect (i.e., whether a mutation
increases or decreases binding affinity) rather than the magnitude of
the effect. We plan to further develop our model to capture the
quantitative effect ofmutations in the future. Besides, one limitationof
our model is that we only focused on the RBD sequences, while many
mutations occur outside the region. We noted that the mutagenesis-
assayed data provides semantically meaningful directions for finding
“better-than-natural” sequences. An increasing number of experiments
characterize the functionality of mutations in other regions, and we
plan to explore these datasets in the future. Another concern is thatwe
only optimized two targets, the ACE2 binding and antibodies escape,
while the directionality of evolution is also driven by many other
properties, like the epidemiology features and T-cell responses. In
addition, the limited availability of variant ACE2 datasets prevented
our model from capturing the full fitness landscape. Furthermore, the
virus evolves continuously, making the set of effective neutralization
antibodies change over time. Fortunately, the increasing availability of
deep mutational scanning datasets19,56 makes it convenient to track
and update our model regularly. In the future, we will use these data-
sets and incorporate more in vivo and in vitro experimental data.
Specifically, wewill combine the in vivo antibody-antigen co-evolution
data from patients and the assessment of other immune responses to
better understand and predict the evolution of SARS-COV-2.

Methods
Dataset
We collected and cleaned nine deep mutational scanning datasets,
which measure the binding affinity of the SARS-COV-2 RBD variants
towards the ACE2 and eight antibodies from four classes. We built a
dataset consisting of 19132 RBD sequences, where each sequence has
nine labels, corresponding to their binding ability to the nine targets.
Most sequences have one or twomutations compared to the wild-type
RBD sequence. However, considering the possible batch effect and the
physical meaning differences among the measured scores, we nor-
malized each score independently by transforming the continuous
variables into semanticallymeaningful binary labels. For the ACE2 task,
we directly compared the binding score of the mutated sequences to
the wild type and set the label to “enhanced binding” if the score is
larger than the wild type and vice versa. There is no information about
the wild type for the eight antibodies tasks, so we cannot set the
threshold as described earlier. Instead, we found that the distributions
of the binding score’s logarithm clearly show two clusters; therefore,
for all antibody datasets, we took it as a mixture-of-Gaussian model
respectively, defining the one with smaller binding scores as escaped
and vice versa. This preprocessing step is consistent with the sub-
sequent work57.

In summary, there were 1540 (8%) mutated RBD sequences iden-
tified as enhanced binding to ACE2, 3482 (18%) mutated RBD
sequences identified as escaped to COV2-2096, 1220 (6%) mutated
RBD sequences identified as escaped to COV2-2832, 2000 (10%)
mutated RBD sequences identified as escaped to COV2-2094, 1473
(8%) mutated RBD sequences identified as escaped to COV2-2050,
1859 (10%) mutated RBD sequences identified as escaped to COV2-
2677, 929 (5%)mutated RBD sequences identified as escaped to COV2-
2479, 780 (4%)mutated RBD sequences identified as escaped toCOV2-
2165 and 3347 (17%) mutated RBD sequences identified as escaped to
COV2-2499.

We used the pseudovirus neutralization test assay data from Liu
et al.41 to validate our model performance. The dataset measures the
immune escaping of 10 high-risk variants pseudoviruses by comparing
the fold change in IC50 of 17 monoclonal neutralizing antibody
responses against wild-type pseudovirus.
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Overview of the multi-task model
A central feature of SARS-COV-2 is antigenic evolution, that is, under
high immunepressure, the newly emerging variantswill tend to escape
the antibody while do not lose much binding ability to the ACE2.

To accomplish the goal of predicting antigenic evolution, we need
to construct the virtual fitness landscape of the antigenic regions,
especially for the RBD protein. We aimed to infer the fitness landscape
of the RBD by learning the effects of mutations on ACE2 binding and
antibody escape. Specifically, given RBD variant sequences and their
labels, together with the binding partner (ACE2/antibody) structures,
our model learned the nonlinear mapping function f that can simul-
taneously predict the binding specificity for ACE2 and antibody. The
function f is parameterized by learnable mapping parameters θ com-
posed of three modules: the sequence feature extractor S, the struc-
ture feature extractor G and the sets of nine classification heads
H = fHcg9c = 1, where all Hc share the same group of parameters. All
three modules are neural networks. The parameters of the three
modules are optimized in an end-to-end manner.
1. Sequence feature extractor. The sequence feature extractor

takes as input of amino acid sequences of RBD variants
x= ðx1, x2, . . . , xlÞ of length L, where L denotes the length of the
RBD sequence and elements xi belongs to A = {all amino acids}.
Input is mapped to a dense representation vector (sequence
representation). The backbone of the sequences feature extractor
is the ESM-1b transformer, which is pretrained on UniRef50
representative sequences with the masked language modeling
objective. We chose the ESM-1b as the sequence feature extractor
because it outperforms other baselines on a range of downstream
tasks. The pretrained weights were used for initializing the
neural network, and we fine-tuned the model parameters during
training.

2. Representing structure as graph. We first represented the 3D
structure as a k-nearest neighbor graph g = ðV ,EÞwith the node set
V = fvjgNj = 1 of size N, where each element vj denotes for the
features of representative atoms (we chose N, C, and O atom in
the experiment) in the protein 3D structure, N denotes the total
number of atoms. For each atom,we got its twonearest neighbors
with the following constraints: the ones with the same atom type
but belong to different amino acids. We then measured the
dihedral angles of the atom and its neighbors to as node features.
The edge features E = feijgi≠j describes the relationship between
the nodes, including the relative distance, direction, and orienta-
tion between the two nodes in the three-dimensional space. We
set k as 30.

3. Structure feature extractor. The structure feature extractor tasks
as input of graphs g = ðV ,EÞ describing the spatial feature of the
protein structure. The transformedgraph is furthermapped into a
dense representation vector (structure representation). The
backbone of the structure feature extractor is a Structured
Transformer37, where the attention for each node is restricted to
its k-nearest neighbors in 3D space. We chose the Structured
Transformer for the structure feature extraction as it is
computationally efficient and performs well in the protein design
task. The structure representationworks as conditional tags in our
multi-task learning.

4. Classification heads. After getting the sequence representation
and the structure representation, we concatenated the two vec-
tors into the joint representation, and fed it into the classification
heads. The classification heads map the joint representation to
the labels. We used nine parallel classification heads for the nine
classification tasks, while the neural network parameters are
shared. During training, the sequence feature extractor, the
structure feature extractor, and the classification heads are
trained in an end-to-end manner to minimize the average
classification loss among the nine tasks.

5. Loss function. Let x= fxigNi = 1 be the set of RBD variant amino acid
sequences, and y= fyigNi = 1 be the set of labels of all sequences, and
y= fyigNi = 1 denotes for the set of M labels of the i-th RBD variant.
Furthermore, let G= fgcðV ,EÞgMc = 1 consists of M graphs derived
from the ACE/antibody structures. We seek to learn a joint
embedding for all downstreamclassification tasks to bettermodel
the fitness landscape of RBD. Therefore, the sequence feature
extractor and the structure feature extractor are shared among all
tasks. Considering that all the tasks are imbalanced in terms of the
positive and negative samples, we added a rescaling weight pc to
all tasks and optimized the following loss function:

L=
1

MN

XM

c = 1

XN

i= 1

�½pcy
c
i � log σ Hc S xi

� �G gc

� �� �� �

+ 1� yci
� � � logð1� σ Hc S xi

� �G gc

� �� �� �Þ�
ð1Þ

Where pc equals to the number of positive samples divided by the
number of negative samples, M equals to nine, σ is the sigmoid func-
tion. The equation measures the binary cross entropy between the
targets and predicted probabilities.

Architecture and hyperparameters
The architecture of the sequences feature extractor is based on the
ESM-1b transformer, which consists of 34 layers, we used the outputs
of the 33rd layer as the sequence feature representations. For the
structured transformer, we only kept the transformer encoder, and
used three layers of self-attention and position-wise feedforward
modules with a hidden dimension of 128. Finally, we got a 1280-d
vector for each sequence as the sequence representation and a 1300-d
vector for each 3D structure as the structure representation. For each
classification head, we used 1024 neurons in the first layer and two
neurons in the second layer. The RELU function is used between the
layers as nonlinear activations. We also passed a dropout rate p =0.5
and added weight decay to prevent overfitting. We trained the entire
model with the AdamW optimizer and used a linear schedule with
warmup to adjust the learning rate. We set the batch size as 16 and
gradient accumulation steps as 10, which means that the total train
batch size is 160, and the validation is the same. We used a weighted
random sampler function for our training batches, which oversamples
the minority class to ensure that the number of samples in each class
are equal or close to equal. The model was trained for 9500 updates
with the initial learning rate of 1e-5 and warmup steps 120, during
which the model with the best marco F1 score among all the tasks was
kept. The hyperparameters described above were decided through
several trials of experiments and selected the one with the best
performance.

Choice of baselines
Our framework follows the machine learning-guided directed evolu-
tion paradigm, while the quality of generated sequences largely
depends on the sequence-function model. Thus, we validated the
generalization ability of the models to newly seen variants with cross-
validation. Our multi-task deep learning model was designed as a
supervised technique to infer the fitness of variant sequences, while
there is no existing method designed for multi-task learning or multi-
label learning on this task. So instead,weevaluated the performance of
the existing methods separately for all nine tasks. We chose the state-
of-the-art supervised-learning-based methods for inferring the effect
of mutations, including the augmented Potts model30, the eUniRep
model26, and the gUniRep model38. We also benchmarked several
baselinemachine learningmethods including CNN, LSTM, RNN, Linear
Regression, SVM, and Random Forest.

The augmented Potts model combines the evolutionary infor-
mation with the one-hot encoded amino acid sequences as input
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features and trains a linear regression model on top of the features. It
outperforms most existing methods in inferring the effects of muta-
tions. We first generated the multiple sequence alignments profile of
RBD using the profile HMM homology search tool Jackhmmer. We set
the bit score threshold as 0.5 and the number of iterations to 1. We
then calculated the evolutionary Potts potential of the RBD variant
sequences using the plmc. We replaced the Ridge regression with a
Logistic regression head for the classification objective while keeping
the rest procedures the same as the original settings.

The gUniRep model was trained on 24 million UniRef50 amino
acid sequences with the next amino acid prediction objective, and the
representations extracted from the pretrained model acts as a fea-
turization of the sequences, benefits the downstream protein infor-
matics tasks. With the RBD variant sequences as input, we got the
fixed-length vector representations from the pretrained model as
sequence embeddings. We added a Logistic regression head for
downstream classification.

The eUniRep model was built on top of the gUniRep model. An
unsupervised fine-tuning step with sequences related to the target
protein (evotuning)was introduced to learn the distinct features of the
target family. Previous in vitro studies on the GFP and beta-lactamase
proved its effectiveness for efficiently modeling the protein fitness
landscape. We performed evotuning with the same MSA profile we
generated in the augmented Potts model. After that, we characterized
the sequence embeddings with the eUniRepmodel and train a Logistic
regression model for downstream classification. All methods were
trained and tested on the same training data and validation data for all
five folds.

The CNNmodel consisted of a featuremodule and a classification
module, where the feature module was composed of two 1D con-
volution layers, max-pooling layers, and ReLU layers. A 128-
dimensional feature vector generated by the feature module was
used to predict the label by the classification layer.

The LSTM model consisted of a feature module and a classifica-
tionmodule, where the featuremodulewas composed of one 1D LSTM
layers and two linear layers, followed a ReLU layer and a sigmoid layer.
A 128-dimensional feature vector generated by the featuremodule was
used to predict the label by the classification layer. The RNN model is
similar to LSTMmodel, except replace the LSTMmodule with the RNN
module. The Linear regression, SVM and Random Forest were imple-
mented using Scikit-learn v1.1.058.

Ablation study
We performed ablation studies to show the effectiveness of
each module. We first explored the effectiveness of the graphical
representations. We replaced the structure features with the random
Uniform noise X ∼Uð0, 1Þ and performed the multi-task learning
with the same training details and procedures. Besides, we also
explored the importance of fine-tuning by freezing the parameters of
the ESM-1b model and only optimized the parameters of the
classification head.

Performance evaluation
We evaluated the multi-task learning model with the fivefold cross-
validation. We randomly split the dataset into five folds. Each time,
we used four folds as the training data and held out the remaining fold
for validation. We used the Accuracy, Precision, Recall, and F1 score
to evaluate the classification performance across all models. As all
nine classification tasks are imbalanced, we used the Marco-precision,
Marco-recall, and Macro-F1-score to get an unbiased evaluation.
True positive (TP), true negatives (TN), false positives (FP), and false
negatives (FN) were measured by comparison between the prediction
results produced by the model and the ground truth in the validation

set.

Accuracy=
TP +TN

TP +TN + FP + FN
ð2Þ

Recallc =
TP

TP + FN
,Recallmacro =

Recall1 +Recall2
2

ð3Þ

Precisionc =
TP

TP + FP
,Precisionmacro =

Precision1 + Precision2

2
ð4Þ

F1macro = 2×
Precisionmacro ×Recallmacro

Precisionmacro +Recallmacro
ð5Þ

Generate virtual RBD variant sequences with the genetic
algorithm
To forecast the variants that follows the antigenic evolutionary
potential, we applied the genetic algorithm for searching the peaks of
the fitness landscape described by our model. Inspired by Darwin’s
theory of natural evolution, the genetic algorithm mimics the evolu-
tionary process in the genome, where mutations, crossover, and
selection happen, letting candidate solutions of a population with
higher fitness scores have a higher probability of surviving and pro-
ducing the next generation of offspring. For SARS-CoV-2, it has been
proven that similar progress happens in immunocompromised infec-
ted patients who got treated with themonocle antibodies33. Hence, we
used the genetic algorithm to model the antigenic evolution process
and search for the potential risky variants that might appear in the
future. The genetic algorithm we used consists of the following steps:
1. Selection of initial sequences. For the Omicron related experi-

ments, the initial input sequences were obtained from the March
8, 2022 GISAID release1. We selected the RBD sequences from 1
January 2022 to 8 March 2022, resulting in 957 distinct RBD
sequences. For the Delta experiments, the initial RBD sequence is
the Delta variant RBD sequence. For each sequence, we created a
generation P0 of size S by perturbing the sequences S times to
generate a set of distinct modifications to the original sequence.

2. Perturb operation. For a given sequence x= ðx1,x2, . . . ,xnÞ, we first
randomly selected an amino acid xi, and got the K nearest
neighbors of the selected amino acid according to the BLUSUM62
matrix. Secondly, we computed the fitness value when xi is
replaced with its neighbors, while keeping the remaining set of
words unchanged.We thenpicked themutationwith aprobability
proportional to its fitness value. Finally, the selected mutated
amino acid replaced the original one, we got a new sequence. We
set K = 20 in our experiments.

3. Estimation of the fitness. The fitness score is defined as the aver-
age value of target label prediction probabilities for all nine tasks.
For ACE2 binding task, the target label is binding, while for the
antibody task, the target label is escape. The probabilities were
found by querying the trained multi-task model.

4. Crossover. After getting the perturbed population and the fitness
values for each individual sequence, we performed the crossover
operation. Pairs of sequences are randomly selected with the
probabilities proportional to its fitness value. A child sequence is
then generated by independently sampling from the two parents.
The newly generated sequences form the new generation. If the
fitness value of a population member in the generation is higher
than the high-risk threshold, the optimization is done. Otherwise,
the perturbation, selection, and crossover operation will be
applied to the new generation.
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We performed in silico evolution for each initial sequence from
GISAID subset for 100 times independently, and finally got 38,870
unique RBD variant sequences for the experiment. We obtained 3,876
unique RBD variant sequences derived from the Delta variant, which
eight candidateswere utilized in theHTRF-basedneutralizing antibody
binding assay (Supp Table 5) for the Delta-focused study.

Evo-velocity analysis
The Evo-velocity analysis follows the study of Hie et al.42. They used the
pretrained protein language model (e.g., ESM-1b) to predict the local
evolution within protein families and used a dynamic “vector field” to
visualize it. It involves embedding the sequences of interest as vectors
in a high-dimensional latent space, where the geometric distance
between the representation of proteins correlates with their actual
structural, functional, and evolutionary relatedness. The evo-velocity
between two sequences is calculated by considering the log-
pseudolikelihood of observing a mutation from one sequence to
another, providing a local mutational likelihood gradient around a
particular protein. When looked at globally, this vector field gives
insight into the directionality of the evolutionary process and can
model global evolution. We first computed the embeddings for each
sequence with the ESM-1b model, and then constructed the K-nearest-
neighbor graph based on the embeddings, in which node represents
the sequences and edges connected similar sequences. Further, the
edges were assigned with directions based on the language model
pseudolikelihoods, with flow-in node meaning evolutionarily favor-
able. Here, we performed the Evo-velocity analysis with their settings
and ours. In our setting, we used the joint embeddings extracted from
the fine-tuned protein language model and the Structured Transfor-
mer model to represent the sequences and set the direction of the
edge by comparing the average predicted score among the nine tasks,
where vertex with a large value is defined as the tail. We collected 7594
unique RBD sequences from the 8 March 2022 GISAID release. The
date of the sequence is defined as the first reported date. After con-
structing the directed KNN neighborhood graph, we further per-
formed network diffusion analysis to infer the pseudo time. We
manually set the root as the wild-type RBD sequences.

Visualization
We visualized the model embeddings using UMAP. The K-nearest-
neighbor network was built with the k set to 30, while the resolution is
set to 1. We calculated the KNN graph and performed UMAP for both
the GISAID sequences and the generated sequences. We further pro-
jected the predictedKLdivergencemapsonto aRBD structure (PDB id:
6m0j) and visualized the structure with PyMol. We collected the
binding epitopes for class 1, 2, and 3 antibodies from Greaney et al.18,
while for the class 4 antibodies, we used the contact sites of antibody
CR3022 to represent the class 4 binding epitope.

We used probability-weighted Kullback-Leibler Logo plot for
visualizing the generated mutations. Let M1 = ðf 1,f2,f3,. . .,fnÞ denote
the position frequencymatrix (PFM)of the initial sequences,where the
length of the initial sequences are n and each f i = ða1,a2, . . . ,a20ÞT ,
represents the frequency of each amino acid at position i. Further, let
M2 = ðf 01,f 02 ,f 03,. . .,f 0nÞ denotes for the PFM of the generated sequences,
each f 0i = ða0

1,a
0
2, . . . ,a

0
20ÞT . We computed the KL divergence for each

position:

DKLðf 0i∣∣f iÞ=
X20

i = 1

a0
i �lnða0

i=aiÞ ð6Þ

TheKLdivergence denotes for the total heights at eachposition in
the logo plot. We further set the height and the direction of a letter
with a probability-weighted normalization46, where the relative height

of each individual amino acid is proportional to a0
i �lnða0

i=aiÞ:

h a0
i

� �
=

a0
i �lnða0

i=aiÞP20
i= 1 a

0
i�∣lnða0

i=aiÞ∣
DKLðf 0i∣∣f iÞ ð7Þ

Antibody-antigen docking
Wecollected the crystal structures of representative antibodies of four
antigenic classes from PDB database: LY-CoV16 (class 1, PDB id: 7c01),
LY-CoV555 (class 2, PDB id: 7kMG), S309 (class 3, PDB id: 7R6W) and
CR3022 (class 4, PDB id: 6w41). Next, we usedMLAEP to generate risky
RBD sequences based on the GISAID subset (1 January 2022 to 8March
2022). The top 20RBD sequenceswith highest scorewere selected and
modeled by the protein structure homology-modeling server SWISS-
MODEL59. Besides, we also collected the RBD structure of the Wuhan-
wild type and Omicron variant. After that, the in silico docking simu-
lation between RBD structures and antibodies was implemented with
the Rosetta antibody-antigen docking protocols60. We applied the all-
atom relax protocol, docking prepack protocol, and antibody-antigen
docking simulationusing the SnugDockwith the complex structuresof
the combination of 22 RBD structures and four antibodies. We ran the
docking 1000 times independently for each antibody-antigen pair and
got 1000 Rosetta interface scores as binding scores. The Rosetta
interface score (Isc) is defined as

Isc = Ebound � Eunbound ð8Þ

where Ebound is the score of the bound complex, while the Eunbound is
the sum of the scores of individual docking partners. We further fil-
tered out the scores with Isc>0 for getting reasonable scores. The
statistical significance was tested using the two-sided t-test for the
means of two independent samples of scores.

Recombinant monoclonal antibody and RBD variants
purification
The sequences coding SARS-COV-2monoclonal antibodieswere kindly
provided by Prof. James E. Crowe from Vanderbilt University Medical
Center. The LH and HC sequences were codon optimized and sub-
mitted to Genescript for custom human IgG1 antibody expression.
Sequences of wild-type, delta variant, and synthetic variant RBD pro-
teins were codon optimized and submitted to Twist for vector con-
struction. All RBD constructs contain a secretion signal on the N-
terminal, and a 6× his-tag followed by a strep-tag II on the C-terminal.
In brief, Expi293 cells were transfected in 40mL Expi293 Expression
Medium (Thermo Fisher A1435101) at 37 °C, 8% CO2 on an orbital
shaker at 120 rpm. After five days, cells were removed by spinning at
500 × g for 5mins at 4 °C, and the medium was further centrifuged at
16,000× g for 5mins at 4 °C. The supernatant was thenmixedwith his-
tag purification resin (Beyotime P2221) on a shaker at 4 °C. After 1 hour
of incubation, the mixture was loaded on a gravity chromatography
column and washed for 15mL of washing buffer [25mM Tris, pH 8,
300mM NaCl, and 1mM DTT]. The elution was collected in 5mL and
loaded on another 2mL column pre-packed with 0.5mL Strep-Tactin
XT 4Flow high-capacity resin (IBA Lifesciences 2-5030-025). The RBD
proteins were eluted in 5mL of washing buffer supplemented with
50mM Biotin. For some mutant RBD proteins that have reduced
secretion into the medium, cell lysates were prepared in lysis buffer
[25mM Tris, pH 8, 300mM NaCl, 0.5% Triton X-100, 1mM DTT, 1×
protease inhibitor cocktail (PIC)] for 30min on a shaker at 4 °C. Clar-
ified lysates were subject to two affinity columns following the same
purification protocols. All purified RBD proteins were buffer exchan-
ged and concentrated to 1μM in 1× PBS using Amicon, flash-frozen in
liquid nitrogen, and stored at −80 °C.
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Homogeneous time-resolved fluorescence (HTRF) antigen-
antibody binding assay
The binding intensity between purified SARS-COV-2 RBDs and
neutralizing antibodies was measured as HTRF signals in the
antigen-antibody binding assay. The HTRF donor and acceptor
pair were chosen to target the his-tagged RBD proteins and
human IgG1 antibodies, respectively. Briefly, a total of 10 μL
reaction was set up on each well of the black, round-bottom, low-
volume 384-well plates (Corning 4511) containing 5 nM purified
wild type or mutant RBDs, 3 nM goat anti-human IgG conjugated
with Alex Fluor 647 (Thermo Fisher A-21445), 0.33 nM monoclonal
antibody anti-6His-Tb-cryptate Gold (Cisbio 61HI2TLA) and two-
fold dilutions of neutralizing mAbs from 2 nM to 0.0156 nM in 1×
PBS supplemented with 0.1% BSA, and 0.1% Tween-20. The plate
was sealed with plastic film and incubated at room temperature
for 1 hour. The HTRF signals were measured in CLARIOstar Plus
(BMG LABTECH) with the excitation filter at 340 nm and the
emission filters at 620 nm and 665 nm. The reading lag time and
integration time were set to 60 μs and 200 μs, respectively. The
HTRF ratios from samples and negative controls were calculated
by dividing the intensity readouts from the 665 nm channel over
the 620 nm channel. All ratios were background subtracted and
normalized in ΔF%:

4F%=
HTRF ratioðsampleÞ �HTRF ratioðnegative controlÞ

HTRF ratioðnegative controlÞ × 100

ð9Þ

The IC50 value was calculated by fitting the data into a dose-
response curve in Prism 9. Data points with the ‘hook’ effect were
removed from the fitting.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The deep mutational scanning datasets is publicly available at https://
github.com/jbloomlab/SARS-CoV-2-RBD_DMS/blob/master/results/
binding_Kds/binding_Kds.csv and https://media.githubusercontent.
com/media/jbloomlab/SARS-CoV-2-RBD_MAP_Crowe_antibodies/
master/results/escape_scores/scores.csv. The pseudovirus neutraliza-
tion test assay data is publicly available in https://www.nature.com/
articles/s41586-021-04388-0/figures/4. The prevalent hCoV-19 RBD
sequences used in this study are based on metadata associated with
5,483,918 sequences available on GISAID up to March 8th, 2022, and
accessible at https://doi.org/10.55876/gis8.230510mg. The PDB data
was used for visualization and docking experiments, we used: PDB id:
6m0j; PDB id: 7c01; PDB id: 7kMG; PDB id: 7R6W; PDB id: 6w41. The
generated variant sequences and other source data are provided as a
Source Data file. Source data are provided with this paper.

Code availability
We compared our multi-task model with gUnirep(https://github.com/
churchlab/UniRep), eUnirep(https://github.com/churchlab/UniRep),
and augmented potts model(https://github.com/chloechsu/
combining-evolutionary-and-assay-labelled-data), following their
github repository. We performed Evo-velocity analysis with https://
evolocity.readthedocs.io/en/latest/. Besides, we visualized our model
embeddings with UMAP version 0.5. We performed docking experi-
ments with SnugDock in Rosetta 3. We visualized the protein struc-
tures with PyMol 2.4. We use Sklearn version 1.1.1 and Scipy61 1.6.0 for
measuring model performance. The source code for this study can be
accessed at the GitHub repository: https://github.com/WHan-alter/

MLAEP. The webserver can be found at https://mlaep.cbrc.kaust.edu.
sa/. Apermanent archive of the sourcecode is alsoavailable onZenodo
at https://doi.org/10.5281/zenodo.778186762.
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