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A comprehensive benchmarking with prac-
tical guidelines for cellular deconvolution of
spatial transcriptomics

Haoyang Li 1,2,6, Juexiao Zhou1,2,6, Zhongxiao Li 1,2, Siyuan Chen 1,2,
Xingyu Liao 1,2, Bin Zhang1,2, Ruochi Zhang3, Yu Wang3, Shiwei Sun4,5 &
Xin Gao 1,2

Spatial transcriptomics technologies are used to profile transcriptomes while
preserving spatial information, which enables high-resolution characterization
of transcriptional patterns and reconstruction of tissue architecture. Due to
the existence of low-resolution spots in recent spatial transcriptomics tech-
nologies, uncovering cellular heterogeneity is crucial for disentangling the
spatial patterns of cell types, and many related methods have been proposed.
Here, we benchmark 18 existing methods resolving a cellular deconvolution
task with 50 real-world and simulated datasets by evaluating the accuracy,
robustness, and usability of the methods. We compare these methods com-
prehensively using different metrics, resolutions, spatial transcriptomics
technologies, spot numbers, and gene numbers. In terms of performance,
CARD, Cell2location, and Tangram are the best methods for conducting the
cellular deconvolution task. To refine our comparative results, we provide
decision-tree-style guidelines and recommendations formethod selection and
their additional features, which will help users easily choose the best method
for fulfilling their concerns.

Spatial transcriptomics technologies, named “Method of the Year
2020”1, have undergone rapid development in recent years. They are
used to profile spatial locations of all detected mRNAs, providing a
new perspective for biologists seeking to understand cells per se as
well as their microenvironments. Broadly, spatial transcriptomics
technologies can identify undiscovered transcriptional patterns and
reconstruct transcriptional panoramas of whole tissues. On a fine-
grained level, these technologies can be used to explore the inter-
actions among neighboring cells and intracellular and extracellular
states, which helps redefine the function of cells and improves our
knowledge of diseases2. The current spatial transcriptomics tech-
nologies can be mainly classified into two categories. The first

category is image-based technologies, including in situ sequencing-
and in situ hybridization-based methods3, which can profile mRNA
with high spatial resolution, especially at the subcellular level. How-
ever, limitations such as the low number of profiled genes, low sen-
sitivity of mRNA detection, and time-consuming processes impede
the broad application of image-based technologies. The second
category is sequencing-based spatial transcriptomics technologies,
which capture position-barcoded mRNA with nongene-specific
probes. These technologies can profile the whole transcriptome of
tissue sections of any size, and are more user-friendly and less time-
consuming than image-based technologies4. Moreover, spatial tran-
scriptomics technologies are highly applicable andhave beenused to
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improve our understanding of various species, organs, and tissues,
including the brain5, liver6, and tumors7.

One critical issue related to sequencing-based spatial tran-
scriptomics technologies is low-resolution spots containing multiple
cells with several blended cell types, which can conceal the genuine
transcriptional pattern and lead to biological misunderstanding of
the tissue resulting in the distorted cellular-level reconstruction of the
tissue. An important task, therefore, is to quantify the proportion of all
cell types among captured spots, so-called cellular deconvolution.
Following deconvolution, all captured spots can be used to better
understand intercellular functions and recover the fine-grained
panorama of a heterogeneous tissue.

A recent benchmarking study8 was focused on single-cell RNA
sequencing (scRNA-seq) and spatial transcriptomics integration
methods. There is another recent benchmarking study9, in which the
number of related methods is limited and scRNA-seq reference-free
methods are not considered. Despite these efforts, clear guidelines
and solid recommendations for the users are still lacking for the
comprehensive coverage of available methods.

In the present study, we conducted a comprehensive bench-
marking and provided guidelines for the cellular deconvolution of
spatial transcriptomics data. Specifically, we evaluated 18 existing
computational methods with 50 simulated and real-world datasets by
comprehensively testing the accuracy, robustness, and usability of the
methods. Thesemethods could be broadly classified as thosewith and
without scRNA-seq references. Based on their computational techni-
ques, we grouped the methods as follows: probabilistic-based, non-
negative matrix factorization-based (NMF-based), graph-based,
optimal-transport (OT)-based and deep learning-based methods.
During benchmarking, we used multiple metrics and various data
resources with different spatial transcriptomics techniques, spot
resolutions, gene numbers, spot numbers, and cell types to ensure our
assessment was comprehensive and to deepen our understanding of
the cellular deconvolution methods. In addition to the quantification
and visualization processes, decision-tree-style guidelines were pro-
duced,which included the refinement of the benchmarking results and
the collectionof respective additional featuresof themethodsdetailed
in related publications. These guidelines recommend scenario-specific
methods for users considering computational efficiency and the
characteristics of data resources. The general limitations and future
perspectives associated with cellular deconvolution are also discussed
to give users a clear picture of the cellular deconvolutionfield and thus
facilitate the improvement of tools for the community.

Results
Benchmarking pipeline
To evaluate cellular deconvolution methods comprehensively, we
identified 18 existing methods from published and preprint papers as
follows: CARD10, Cell2location11, RCTD12, DestVI13, stereoscope14,
SpatialDecon15, STRIDE16, NMFreg17, SpatialDWLS18, SPOTlight19,
DSTG20, SD221, Tangram22, Berglund23, SpiceMix24, STdeconvolve25,
SpaOTsc26 and novoSpaRc27. According to the data resources used,
Berglund, SpiceMix, and STdeconvolve were scRNA-seq reference-free
methods that identified cell-type-specific spatial patterns using only
the information from the spatial locations of spots and their gene
expression profiles without any reliance on external scRNA-seq data.
The remaining 15 methods required scRNA-seq data from the same
tissue as the spatial transcriptomics data. Cell-type annotations and
cell-type-specific gene expression profiles from scRNA-seq data can
help optimize the proportion of all cell types in the spatial tran-
scriptomics data. The 18 methods were classified based their compu-
tational techniques as follows. Probabilistic-basedmethods: Berglund,
Cell2location, DestVI, RCTD, SpatialDecon, stereoscope, STRIDE, and
STdeconvolve; NMF-based methods: CARD, NMFreg, SpatialDWLS,
SPOTlight, and SpiceMix; graph-based methods: DSTG and SD2; deep

learning-based method: Tangram; and OT-based: SpaOTsc and
novoSpaRc. These five computational techniques introduced different
methods to formulate the spatial transcriptomics data (sometimes
with the scRNA-seq data) and solve the cellular deconvolution pro-
blem (Fig. 1A).

We also collected seven image-based and sequencing-based spa-
tial transcriptomics datasets: seqFISH+28, MERFISH29,30, Spatial Tran-
scriptomics (ST)31, 10X Visium (Visium)32, Slide-seqV233, and stereo-
seq34,35. Their corresponding scRNA-seq datasets were collected as
complementary resources (Supplementary Table 1). Among these data
resources, the image-based spatial transcriptomicsdata (seqFISH+ and
MERFISH) contained gene expression profiles, spatial locations, and
cell-type annotations of individual cells, which could be used to
simulate low-resolution spots by binning the cells with a unified square
size, and the ground truth could be calculated according to the num-
ber of cells with different cell types in each spot. Simulated data could
be used to generate different resolutions of spots by defining the
different sizes of the binning squares. For the sequencing-based spatial
transcriptomics data (ST, Visium, Slide-seqV2, and stereo-seq), real-
world scenarios were included that could be solved by the cellular
deconvolution methods. The resolution statistics and the number of
genes and spots from the abovementioned data resources are plotted
in Fig. 1B. Notably, the spots from stereo-seq were of a subcellular
resolution (500nm), andwe binned the stereo-seq spots to reduce the
resolution for cellular deconvolution (see “Methods”).

After obtaining deconvolution results from all 18 methods on
all spatial transcriptomics datasets, we assessed the performances
of the methods comprehensively according to the following quan-
tities (Fig. 1C): (1) the accuracy of the deconvolution results, which
was evaluated using multiple metrics on all methods and datasets;
(2) the robustness of all methods tested on different conditions
(spatial transcriptomics techniques, number of genes, number of
spots, and number of cell types); (3) the usability of all tools,
including computational efficiency, quality of documents, publica-
tions, and code. To display the benchmarking results of all methods
intuitively, a table containing an evaluation of all metrics according
to the three listed qualities is provided (Fig. 2), in which darker dots
represent better performance (see “Methods”). Moreover, detailed
decision-tree-style guidelines are provided, which include scenario-
specific recommendations of the methods and a summary of
their respective additional features detailed in their related
publications.

Accuracy
To assess accuracy of methods, we used multiple metrics to quantify
the performance of deconvolution, including the Jensen–Shannon
divergence (JSD) score, root-mean-square error (RMSE), and Pearson
correlation coefficient (PCC). For simulated data (MERFISH and seq-
FISH+), we used the JSD score and RMSE to measure the distance
between the predicted cell-type proportion and ground truth (see
“Methods”). Because seqFISH+ and MERFISH have single-cell resolu-
tions, we binned them by size (51.5μm and 100μm, respectively) to
simulate low-resolution spots. According to the number of simulated
spots and genes detected for seqFISH+ and MERFISH, seqFISH+
(71 spots and 10,000 genes) had a low number of spots but a high
number of genes, whereas MERFISH (3067 spots and 135 genes)
exhibited the opposite trend. These two data resources were com-
plementary in terms of the number of spots and genes, and hence
provided helpful results to observe the performance of all methods at
these two extremes. For each sequencing-based dataset (ST, Visium,
Slide-seqV2, and stereo-seq), we chose several cell types and their
known marker genes to compare the PCC between the spatial dis-
tribution of cell-type proportion and marker-gene expression, which
was used to quantify the performance of deconvolution without any
ground truth (Supplementary Table 2; see the “Methods”).
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The performance of each method varied with the data resources
used, but some methods performed steadily great accuracy with both
simulated and real-world datasets, e.g., Cell2location and DestVI
(Fig. 2). Detailed quantifications of JSD, RMSE, and PCC are also pro-
vided (Supplementary Figs. 1, 5, 9–11). Using simulated data, most of
the methods performed well with MERFISH, but only CARD, DestVI,
and SpatialDWLS were high-performing methods with seqFISH+,
indicating that they worked well with a low number of spots.When the
number of spots was higher (i.e., with MERFISH and Slide-seqV2),
Cell2location, SpatialDecon, and Tangram were most capable of per-
forming deconvolution with large views of tissues. In addition, Spa-
tialDWLS performed well with simulated datasets but poorly with all
real-world datasets. The whole cell-type proportions and their ground
truth for all six cell types in seqFISH+ and 12 samples in MERFISH were
visualized among all methods (Fig. 3A, B and Supplementary Figs. 2–4,
11–13). To explore the performances associated with these six cell
types, spider plotswere produced to show theRMSEof the 18methods
for each cell type (Fig. 3C). Excitatory neurons had the highest cell-type
abundance in seqFISH+, and this dataset had the highest RMSE among
all methods. The same trend was observed for inhibitory neurons in
MERFISH. With the sequencing-based datasets, the PCC of ST did not
show a strong relationship and distinct spatial patterns among all
methods. In the ST dataset, the lowest resolution of the spots of all
existing spatial transcriptomics technologies and a highly hetero-
genous tissue sample of pancreatic cancer led to the disappearance of

the spatial patterns of individual cell types and blurred the relation-
ships between cell types and selected marker genes. Nevertheless,
some of the methods still achieved relatively high PCCs, e.g., CARD,
Cell2location, SpatialDecon, and stereoscope.With the Visiumdataset,
most methods performed well with three paired cell types andmarker
genes. Spatial patternswere unclear,whichwas related to the choiceof
cell types rather than a heterogeneity issue in the datasets. With the
Slide-seqV2 and stereo-seq datasets, the spatial patterns were distinct
and most of the methods achieved relatively high PCCs, especially
Cell2location, STdeconvolve, and RCTD, which were the top-three
performingmethods. Among the top-three least-performingmethods,
DestVI tended to output the average cell-type proportions, whereas
SpiceMix and SpatialDWLS generated the mapping with much noise
whichmeans that they could not distinguish the cell type patterns well
in the real-world datasets.

Robustness
To evaluate the robustness of the 18 tested methods, we designed
several experiments with different conditions as follows: (1) 10,000,
6000, or 3000 genes were randomly chosen in the seqFISH+ dataset
and 26,365, 18,000, and 9000 in zebrafish embryo dataset by stereo-
seq; (2) three resolutionswere simulatedwith 12MERFISHdatasets and
zebrafish embryo dataset using binning sizes of 20, 50, and 100 μm
and 5, 10, and 15μm, respectively, which were also used to test per-
formance with different numbers of spots; (3) 17 original cells types

Fig. 1 | The summarization of benchmarking pipeline. A Eighteen cellular
deconvolution methods, classified based on their data requirements and compu-
tational techniques, were evaluated with 50 simulated and real-world spatial tran-
scriptomics datasets.BDatasets from six spatial transcriptomics technologieswere

used for benchmarking, and the scatter plot shows the resolution of each spot and
number of spots and genes in each technology. C The benchmarking results were
measured according to the accuracy, robustness, and usability of the methods.
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and 11 integrated cell typeswere tested in Slide-seqV2 datasets; (4) two
kinds of normalizationmethods in the Visium dataset to test the effect
of normalization of input spatial transcriptomics data; (5) three dif-
ferent values for each chosen hyperparameters in Visium and Slide-seq
V2 datasets among five pairs of cell types and their marker genes; and
(6) the stability of the performance was assessed by repeating the
experiments three timeswith the seqFISH+dataset using 10,000genes
per spot.

We found that the general JSD and RMSE of almost all methods
were barely changed with the seqFISH+ datasets; the exception was
SpiceMix, which performed surprisingly weakly with 3000 genes
(Supplementary Fig. 5 and Supplementary Dataset 1). In the tests of
different spot numbers and resolutions with MERFISH datasets, the
performance of all methods worsened with an increasing number of
spots, and this tendency was most evident with SpiceMix and STRIDE
(Supplementary Fig. 9 andSupplementaryDataset 1).We visualized the
JSD and RMSE using all 12MERFISH samples with three resolutions and
all methods, and the patterns mentioned above were more distinct,
although Tangram, stereoscope, and DestVI performed steadily with
all 36 datasets (Supplementary Fig. 10). However, on these datasets,
DSTGandSpiceMixdid notperformwell. Inparticular,DSTGcould not
identify the clear patterns of different cell types from visualization
results and SpiceMix did not perform well possibly due to the mis-
alignment of predicted topics andbiological cell types.Using the Slide-
seqV2 datasets, we chose two paired sub-cell types from the 17 original
cell types and combined each pair as new cell types with biological
senses (see “Methods”). For example, two sub-cell types, CA1 and CA3,
are the main subfields of the hippocampus proper with their own
spatial pattern at the start and end of the neural circuit31,32. We com-
bined these two sub-cell types under the name “CornuAmmonis” (CA),
which was the former name of the hippocampus. The spatial patterns
from the sub-cell types (CA1 and CA3) and integrated cell types were
located from the results of 17 and 11 cell types in Slide-seqV2 (Sup-
plementary Figs. 14 and 15). Based on the visualization and PCCs of the
Slide-seqV2 datasets, we found that SpatialDecon, Tangram, and RCTD

had the capability to handle datasets with fine-grained sub-cell types
(Supplementary Fig. 11). For the zebrafish embryo dataset by stereo-
seq, SpatialDecon, Tangram and CARD showed great performance in
terms of both different spot numbers and different gene numbers
among three different kinds of cell types (Supplementary Figs. 17 and
18). The effects of normalization methods to the performance were
also evaluated on the Visium dataset by comparing the results from
input spatial transcriptomics data as the raw count, and two normal-
ization functions: lognorm and sctransform36. These two normal-
ization functions were commonly used methods in the analysis of
scRNA-seq data. The results showed that many methods (e.g., DestVI,
SpatialDecon and SPOTlight) performed better using raw data than
using normalized data by lognorm (Supplementary Fig. 19), mainly
because there were default normalization procedures in these meth-
ods. Thus, lognorm would repeatedly normalize the data which
resulted inworse performance than directly inputting the raw data.On
the other hand, someofmethods (e.g., SpaOTsc and Tangram) did not
have any default normalization procedure in their pipelines which
causedbetter performancewhen being normalized by lognorm.But all
the methods performed worse with the sctransform normalization
(Supplementary Fig. 19). In this evaluation, Cell2location and STde-
convolve were not included because they required to use the raw
count as input data. With respect to the effect of hyperparameters,
three different values of each hyperparameter for individual methods
were chosen to calculate the variance of PCCs (Supplementary
Table 5). This experiment was conducted on Visium and Slide-seq V2
datasets overfive pairs of cell types and theirmarker genes. The results
reflected that most of the methods were stable enough among dif-
ferent hyperparameters except DSTG whose variances were over 0.01
(Supplementary Fig. 20). To test the stability of all methods, we
repeated the experiments three timeswith seqFISH+ and 10,000genes
per spot and found that 13methods showeda steadyperformancewith
three identical results. Of the remaining five methods, SD2 and DSTG
exhibited high variance in the JSD andRMSE, whichwas related to their
strategies of using synthesized pseudospots (Supplementary Fig. 21).

Fig. 2 | The summary table of the performance of all methods. We visualized
their performance in terms of accuracy (red), robustness (blue), and usability
(green), and we listed the requirement of spatial location, programming language,
and the overall performance (gray) for each method. For all colored dots, a darker

shade represents better performance. The black dots shown in normalization and
hyperparameter of robustness meant that the methods required the raw count as
input spatial transcriptomics data onlyor do nothave hyperparameters to regulate.
Source data are provided as a Source Data file.
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Generally, CARD, Cell2location, Tangram, and SD2 were the most
robust methods according to their performance with different reso-
lutions, number of genes, number of spots, and number of cell
types (Fig. 2).

Usability
Besides testing the performance of the methods with different situa-
tions and datasets,we also assessed their computational efficiency and

user-friendliness, which are important factors to users. To fulfill the
main concerns of users, we recorded the running time with three dif-
ferent spot numbers in the MERFISH datasets and stereo-seq dataset,
and scored several aspects of the tutorials of all methods, including
document quality, code quality, installation procedure, compatibility
for operating system and example analysis.

According to running time (Supplementary Tables 3 and 4),
NMFreg, STRIDE, andTangramwere themost efficientmethods. As the

Fig. 3 | The performance of all methods for simulated datasets. A Visualization
of the ground truth and predicted the proportions of excitatory neurons for 18
methods with the seqFISH+ datasets and 10,000 genes per spot. B Visualization of
the ground truth and predicted results of deconvolution for all methods with
MERFISH datasets (100μm resolution per spot). The six cell types are represented

by the six different colors shown in (C). C Spider plots showing the RMSE of the
deconvolution results for the 18 methods among 6 cell types from the MERFISH
(100, 50, and 20μm resolution per spot) and seqFISH+ (10,000, 6000, and 3000
genes per spot) datasets. Source data are provided as a Source Data file.
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default hyperparameter is set when using all methods, hyperpara-
meter selection has a substantial effect on method efficiency. In terms
of the quality of tutorials and code, most methods satisfied the basic
requirements of users. In particular, CARD, Cell2location, RCTD, and
DestVI were highly user-friendly with helpful tutorials and readable
code that were easy for users to implement.

Guidelines
Considering the performance of each method and the features
described in their related publications, we provided scenario-specific
recommendations and guidelines for the methods according to four
crucial scenarios (Fig. 4). Because users usually pay less attention to
the computational techniques of methods, all scenarios were related
to the characteristics of data and computational efficiency. For
example, the first scenario was the absence of scRNA-seq reference
data from the same tissue, which could be considered a general sce-
nario for userswith several possible concerns: (1) the lack of scRNA-seq
data from some markedly heterogeneous tissue sample (e.g., cancer-
ous tissue); (2) missing or inconsistent cell types annotated between
scRNA-seq and spatial transcriptomics data; and (3) the platform
effects of scRNA-seq and spatial transcriptomics data. For each branch
of the decision tree, there were three recommended methods. Tan-
gram and Cell2location succeeded in the most situations with the best
performance.

Several additional features were described for some methods in
their related publications, and these were assessed for our guidelines
for method selection. SpatialDecon and RCTD are claimed to correct
the variance in gene expression profiles, which resolves the platform
effects between scRNA-seq and spatial transcriptomics data11,14. Cell2-
location and SpiceMix can identify potential fine-grained sub-cell
types, and CARD can impute cell-type compositions to construct a
refined spatial tissue map9,10,22. Most methods utilize discrete cell
types, althoughDestVI has the advantage of identifying the continuous
variation within the same cell type, which is useful for studying the
same tissue section under different conditions13.

Discussion
Here, we presented a comprehensive benchmarking study and
guidelines for 18 existing cellular deconvolution methods used in

spatial transcriptomics.We evaluated thesemethods using 50datasets
with multiple metrics in terms of accuracy, robustness, and usability.
The datasetsweused included simulateddatasets binnedby single-cell
resolution datasets (e.g., seqFISH+ andMERFISH) which could be used
for quantitative evaluation as the ground-truth is known for such
datasets, and real-world datasets generated by sequencing-based
technologies (e.g., Slide-seq V2 and stereo-seq)which could be used to
mimic the real-world scenarios for cellular deconvolution tasks. Con-
sidering the performance and additional features of the methods,
decision-tree-based scenario-specific recommendations and guide-
lines formethod selection were proposed for users.We found that the
performance of the 18 methods varied among multiple spatial tran-
scriptomics technologies with different experimental conditions.
Nevertheless, each method category contained at least one high-
performing method. In general, CARD, Cell2location, Tangram, and
RCTDwere the best performingmethods. Compared with the existing
benchmarking studies8,9, our study included most number of existing
methods.More importantly, we provided a full-scale summarizationof
the performance of all the methods and characterized it as a clear
guideline including the solid recommendation of the methods and
demonstration of their additional features which would give readers
an overall understanding of deconvolution in spatial transcriptomics
data analyses.

Following our assessment, we raise two general but crucial lim-
itations that await solutions. First, the platform effect causes two
problems as follows: (1) systematic variation in gene expression pro-
files between scRNA-seq and spatial transcriptomics data; owing
to differences in technology-dependent library preparation and
sequencing platforms, discrepancies in the detected mRNAs from the
same tissue section are inevitable, especially in heterogeneous cancer
tissue sections, and (2) variation between two modalities affects the
mismatch of cell types between scRNA-seq and spatial transcriptomics
data. The prior assumption of integrating these two modalities is to
share the same cell types between scRNA-seq and spatial tran-
scriptomics data. Even though RCTD solves the platform effect issue
via a normalization strategy among all cell types, cell-type-specific
platform effects warrant further exploration12. Second, the high
dropout rate of spatial transcriptomics is a traditional issue in scRNA-
seq. Small libraries lead to deficient mRNA detection; thus, marker

Fig. 4 | Scenario-specific decision-tree-style guidelines for users. Four common scenarios are included, and three methods are recommended for each branch.
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genes for rare cell types become undetectable16. The biological pipe-
line of spatial transcriptomics technologies should be improved fur-
ther, even though this situation has been considered in SD2 and an
imputation method has been proposed21,37.

We also present possible future directions of the field to shed
light on the development in the field. (1) Multimodal learning
will likely become a hotspot in the development of cellular
deconvolution methods used in spatial transcriptomics and its
applications. For instance, bioinformaticians could use histological
tissue images with image intensity levels that could improve our
understanding of spatial transcriptomics. (2) Three-dimensional
deconvolution and mapping of tissues will provide more novel
biological insights than are currently provided by two-dimensional
deconvolution. More spatial transcriptomics datasets with con-
secutive tissue slices are emerging, and the spatial context of
interslices will provide more patterns that assist the deconvolution
process11. (3) Through the development of spatial transcriptomics
technologies, the resolution of spots becomes higher, up to the
subcellular resolution by recent technologies34. Although the rapid
progress of spatial transcriptomics technologies is exciting, the
marginal benefits of higher resolution are outweighed by the
booming higher dropout issue which has more risks of losing some
valuable information. In the future, under current sub-resolution
technologies, the spatial transcriptomics technology for the single
biological cells should bemore essential to develop. (4) The cellular
deconvolution of spatial transcriptomics will not only help biolo-
gists study the structure of tissues but also become associated with
artificial intelligence–assisted computational pathology and the
healthcare system.

Methods
Benchmark metrics
We first assume that there are J genes per spot and I captured spots
in the whole spatial transcriptomics data. Xij represents the
expression value of gene j in the ith spot. Tik and Pik represent
the true and predicted proportion of cell type k, respectively, in the
ith spot through the number of total cell types K . To evaluate the
performance of the tested methods comprehensively, the main
benchmark metrics used were RMSE, JSD, and PCC. The definitions
of these metrics, as used in our benchmarking pipeline, are pro-
vided below.
1. RMSE was calculated between Tik and Pik of per cell type, nor-

malize themby the sumof calculated proportions among all spots
Sk , and then average them as the final RMSE as the following
equation:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3. Because ground truth does not exist in sequencing-based spatial
transcriptomics data, we calculated the PCC between the

predicted proportion of specific cell type Pk and the expression
profile of its marker gene Eg using the following equation:
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Evaluation of methods without a scRNA-seq reference
The methods used without a scRNA-seq reference, also called unsu-
pervised methods, deconvolved low-resolution spots based on the
gene expression profile and location of spots from spatial tran-
scriptomics data only. STdeconvolve was inspired by the notion of
discovering latent topics in collections of documents, which is a
common task in natural language processing, and uses Latent Dirichlet
Allocation to infer the proportions of cell types based on gene
expression profiles in spatial transcriptomics. Berglund uses Poisson
factor analysis andMonte-CarloMarkovChain sampling to deconvolve
spots. SpiceMix uses the locations of spots as anextra input in addition
to gene expression profiles and incorporates graph representations of
spatial relationships into matrix factorization to deconvolve spots.

In general, unsupervised methods needed user to specify the
number of topics which represented the clusters waiting for assigning
the names of known cell types. Ideally, the number of topics should be
similar to the number of cell types. In our evaluation, we set the
number of topics as the true number of cell types manually among all
datasets. After the deconvolution, a topic-by-spot matrix was gener-
ated, andwemultiplied thismatrix and inputted a spot-by-genematrix
to obtain the topic-by-genematrix.We aimed tomap the topics to real
cell types for further evaluation. First, we summed up the same cell
types in an annotated cell-by-gene matrix from the scRNA-seq data as
the cell-type-by-gene matrix. For each real cell type from scRNA-seq
data, we calculated the PCC between this cell type and all topics, chose
the best-paired topic with the highest PCC, and assigned the name of
current cell type to chosen topic. After assignment, this chosen topic
would be ignored in the future steps. Then, we repeated the afore-
mentioned steps on the next cell type until all cell types were iterated.
For now, each topic should be paired with the best suitable cell type
without duplication and topic-by-spot matrix could be easily trans-
ferred to cell-type-by-spot matrix for evaluating the performance of
unsupervised methods further.

Preprocessing of datasets
Owing to theextremely high resolution (500 nmper spot) anddropout
rate of stereo-seq data, it was necessary to integrate subcellular-
resolution spots into low-resolution spots by binning them using a
100 × 100 spot square (bin100) with slides of 50μm (100 × 500 nm)
and summing their gene expression profiles. The bin100 stereo-seq
data had a similar resolution as that of Visium, and it performed rea-
sonably in deconvolution tasks. For the zebrafish embryo dataset by
stereo-seq, it was binned by 5, 10 and 15μm to test the robustness.

To evaluate the robustness of the methods, we tested their per-
formance in terms of different cell types. We integrated the 17 original
cell types into 11 cell types, thereby combining some sub-cell types.We
integrated CA1 and CA3 into “Cornu Ammonis”; Neuron.Slc17a6,
Neurogenesis, and Cajal_Retzius into “Neuron”; Endothelial_Stalk and
Endothelial_Tip into “Endothelial”; and Oligodendrocyte and Poly-
dendrocyte into “Oligo_Poly”12.

For marker gene selection in all datasets, most biological marker
genes were chosen from publications. Specifically, we chose the top-
fivehighly variable genes (calculating the fold-changeof eachgene) for
each specific cell type from Slide-seqV2 datasets as the marker genes.

Article https://doi.org/10.1038/s41467-023-37168-7

Nature Communications |         (2023) 14:1548 7



Construction of a summary table
We constructed a summary table to show the performances of the
methods (Fig. 2). Because JSD, RMSE, and running time showed better
performance with lower values, we normalized the value x in each
column according to minmax max xcol

� �� x
� �

, where xcol represents
the vector of the column. For the other metrics, we normalized
according to minmax directly. Thus, we unified a pattern in which
darker dots represent better performance,which is a pattern that users
will find easy to identify.

Implementation of methods
CARD10: we used the code of CARD v1.0.0 from https://github.com/
YingMa0107/CARD. We set minCountGene to 5 and minCountSpot to
5, which are the default parameter settings.

SPOTlight19: we used the code of SPOTlight v0.99.0 from https://
github.com/MarcElosua/SPOTlight. We set cl_n to 10 and hvg to 2000.

DSTG20: we used the code of DSTG from https://github.com/Su-
informatics-lab/DSTG. We set learning_rate to 0.01 and epoch to 300.

SpatialDWLS18: we used the code of SpatialDWLS from https://
github.com/RubD/Giotto/, which integrates the SpatialDWLS method.
We set min_genes in findMarkers_one_vs_all to 20 and gene_de-
t_in_min_cells and min_det_genes_per_cell in filterGiotto to 5 and 5,
respectively.

SD221: we used the code of SD2 from https://github.com/
leihouyeung/SD2, with the following settings: spot_num= 1000, low-
er_cellnum= 2, and upper_cellnum= 20.

NMFreg38: we used the code of NMFreg from https://github.com/
tudaga/NMFreg_tutorial. The NMF function was used with the follow-
ing parameters: number of components = 30, random_state = 17, and
init = random.

Stereoscope14: we used the code of stereoscope v.03 from https://
github.com/almaan/stereoscope. Analysis with stereoscope was con-
ducted on a GPU with the following parameters: number of genes =
5000, st epochs = 75,000, st batch size = 1000, sc epochs = 75,000, sc
batch size = 1000, and learning rate = 0.01.

Tangram22: we used the code of Tangram v1.0.3 from https://
github.com/broadinstitute/Tangram.Themappingof cells to spacewas
conductedwith the function tg.map_cell_to_spacewithmode= clusters.

Cell2location11: we used the code of Cell2location v0.1 from
https://github.com/BayraktarLab/cell2location. The settings max_-
epochs = 4000, batch_size = None, and train_size = 1 were used.

STdeconvolve25: we used the code of STdeconvolve 1.0.0 from
https://github.com/JEFworks-Lab/STdeconvolve. We used the default
settings, except that the number of factors was set correctly according
to each dataset.

Berglund23: we used the code of Berglund 0.2.0 from https://
github.com/SpatialTranscriptomicsResearch/std-poisson. We set the
following parameters: –iter (=2000), --feature_alpha arg = 1, --mix_-
alpha arg (= 0.5), --phi_r_1 arg (= 1), --phi_r_2 arg (= 0.001), --phi_p_1 arg
(=2), --phi_p_2 arg (=2), --theta_r_1 arg (=1), --theta_r_2 arg (=1), --the-
ta_p_1 arg (= 0.050000), --theta_p_2 arg (= 0.950000), --spot_1 arg
(=10), --spot_2 arg (= 10), --sigma arg (=1), --residual arg (= 100), --bline1
arg (=50), and --bline2 arg (=50) TheMCMC inference options were set
as follows: --MHiter arg (=100) and --MHtemp arg (= 1).

SpiceMix24: we used the code of SpiceMix from https://github.
com/ma-compbio/SpiceMIx. We selected the number of factors based
on the used dataset and set use_spatial to True.

RCTD12: we used the code of RCTD from https://github.com/
dmcable/spacexr, which is integrated into a tool called spacexr (2.0.0).
Spacexr (RCTD) was run with following the configuration: (1) cre-
ate.RCTD was used with the parameter CELL_MIN_INSTANCE= 1; (2)
run.RCTD was used in the doublet mode.

SpatialDecon15: we used the code of SpatialDecon from https://
github.com/Nanostring-Biostats/SpatialDecon.git. SpatialDecon was
run with the expected background count bg set to 0.01.

STRIDE16: we used the code of STRIDE from https://github.com/
DongqingSun96/STRIDE. The cell-type-associated topic profiles were
obtained using the “STRIDE deconvolve” function. If not specified,
STRIDE set the 75% quantile of nCount as the default scaling factor.

DestVI13: we used the code of DestVI (scvi-tools 0.16.0) from
https://github.com/scverse/scvi-tools. DestVI first required genes with
<10 counts to be filtered using the function “sc.pp.filter_genes.” To
performdeconvolution, the single-cell model was then trained to learn
the basis of gene expression with the scRNA-seq data for 300 epochs,
whereas the spatialmodel was trained for 2500 epochs, with a learning
rate of 10−3.

SpaOTsc26: we conducted the code of SpaOTsc from https://
github.com/zcang/SpaOTsc.

novoSpaRc27: we conducted the code of novoSpaRc 0.4.4 from
https://github.com/rajewsky-lab/novosparc. Alpha was set as 0.5.

Computational resource
The workstation used to test all methods had a 2 Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz (30,720 KB cache size; 24 cores in total) and
528 GB of memory. The GPUs were two Nvidia Quadro M6000 24 GB
(48 GB in total). The operating system used was Ubuntu 18.04.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A summary of the data is shown in Supplementary Table 1. seqFISH+:
scRNA-seq and spatial transcriptomics data were both obtained from
https://github.com/CaiGroup/seqFISH-PLUS. MERFISH: scRNA-seq
data were obtained from https://github.com/rdong08/spatialDWLS_
dataset/tree/main/datasets, and spatial transcriptomics data were
obtained fromhttps://datadryad.org/stash/dataset/doi:10.5061/dryad.
8t8s248/. ST: scRNA-seq and spatial transcriptomics data were both
obtained from GSE111672. Visium: scRNA-seq data and spatial tran-
scriptomics data were obtained from https://github.com/
BayraktarLab/cell2location. Slide-seqV2: scRNA-seq and spatial tran-
scriptomics data were both obtained from https://github.com/
dmcable/spacexr. Stereo-seq (olfactory bulb): scRNA-seq data were
obtained from GSE71585, and spatial transcriptomics data were
obtained from https://db.cngb.org/stomics/mosta/. Stereo-seq (zeb-
rafish embryo): the scRNA-seq data and spatial transcriptomics data
are from https://db.cngb.org/stomics/datasets/STDS0000057. All the
mentioned datasets were also integrated and uploaded to public
repository39. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable request.
No data were excluded from the analyses; the experiments were not
randomized; the Investigators were not blinded to allocation during
experiments and outcome assessment. Source data are provided with
this paper.

Code availability
The code is available at https://github.com/leihouyeung/STdeconv_
benchmark39.
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