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Abstract

Protein aggregation is critical to various biological and pathological processes.

Besides, it is also an important property in biotherapeutic development. How-

ever, experimental methods to profile protein aggregation are costly and labor-

intensive, driving the need for more efficient computational alternatives. In

this study, we introduce “AggNet,” a novel deep learning framework based on

the protein language model ESM2 and AlphaFold2, which utilizes physico-

chemical, evolutionary, and structural information to discriminate amyloid

and non-amyloid peptides and identify aggregation-prone regions (APRs) in

diverse proteins. Benchmark comparisons show that AggNet outperforms

existing methods and achieves state-of-the-art performance on protein aggrega-

tion prediction. Also, the predictive ability of AggNet is stable across proteins

with different secondary structures. Feature analysis and visualizations prove

that the model effectively captures peptides' physicochemical properties effec-

tively, thereby offering enhanced interpretability. Further validation through a

case study on MEDI1912 confirms AggNet's practical utility in analyzing pro-

tein aggregation and guiding mutation for aggregation mitigation. This study

enhances computational tools for predicting protein aggregation and high-

lights the potential of AggNet in protein engineering. Finally, to improve the

accessibility of AggNet, the source code can be accessed at: https://github.

com/Hill-Wenka/AggNet.
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1 | INTRODUCTION

Protein aggregation is a complex biochemical process
that often results in the formation of highly ordered amy-
loid fibrils or amorphous aggregates. This phenomenon is
associated with various human diseases, poses challenges
in therapeutic protein development, and inspires the cre-
ation of novel bio-inspired materials. Neurodegenerative
diseases such as Alzheimer's disease (AD), Parkinson's
disease (PD), and Huntington's disease (HD) are widely
believed to be caused by the misfolding and aggregation
of specific peptides or proteins (Koo et al., 1999; Ross &
Poirier, 2004). Similarly, type II diabetes is linked to the
aggregation of islet amyloid polypeptide (IAPP) (Kahn
et al., 1999). With the rapid advancement of protein-
based pharmaceuticals like monoclonal antibodies and
peptide drugs, protein aggregation has emerged as a sig-
nificant hurdle in their production, storage, and purifica-
tion (Lowe et al., 2011; Perchiacca & Tessier, 2012). High
concentrations are often required for these biotherapeu-
tics, but increased interactions between protein mole-
cules can lead to severe aggregation, reducing therapeutic
efficacy and potentially causing side effects (Lundahl
et al., 2021; Rahban et al., 2023). Protein aggregation also
inspires the development of self-assembling nanomater-
ials. Peptides with specifically designed sequences can
self-assemble into nanofibers under certain pH condi-
tions and temperatures (Wang et al., 2008). These nanofi-
bers serve as cell scaffolds to promote cell growth and
tissue regeneration or function as drug delivery systems
to control drug release (Matson & Stupp, 2012). Such
applications have spurred considerable interest in under-
standing and controlling protein aggregation.

To effectively characterize the aggregation and stabil-
ity of proteins, many biosensors are proposed to monitor
and engineer proteins. For instance, Ebo et al. (2020)
developed a tripartite β-lactamase enzyme assay (TPBLA)
that correlates protein aggregation propensity with bacte-
rial susceptibility of beta-lactam antibiotics. Similarly,
Ren et al. (2021) linked the stability of the protein of
interest (POI) with the activity of the bacterial enzyme
CysGA, which catalyzes the formation of endogenous
fluorescent compounds. Nonetheless, these in vivo
methods, along with traditional approaches like x-ray
crystallography and nuclear magnetic resonance (NMR)
spectroscopy (Housmans et al., 2023), are notably
resource-intensive and time-consuming. In contrast, in
silico methods offer a rapid, cost-effective alternative for
identifying aggregation-prone regions (APRs), which are
essential for understanding aggregation mechanisms,
developing mitigation strategies, and even suggesting

new therapeutic strategies for cancer. A recent innova-
tion by Janssen et al. (2023) involved designing amyloid
peptides (Pept-ins™) that target the APRs of KRAS to
induce its misfolding and aggregation, offering a novel
approach to address previously undruggable targets
through protein aggregation.

Several computational tools have been proposed for
protein aggregation prediction, including sequence-based
and structure-based methods. Sequence-based models
such as TANGO (Fernandez-Escamilla et al., 2004),
AGGRESCAN (Conchillo-Solé et al., 2007), WALTZ
(Maurer-Stroh et al., 2010), ANuPP (Prabakaran
et al., 2021), and AggreProt (Planas-Iglesias et al., 2024)
estimate aggregation propensity solely based on the
intrinsic amino acid properties and sequence patterns.
For example, TANGO uses a thermodynamic approach to
consider interactions between residues—including
hydrophobic interactions, charge effects, polarity, and
volume effects—to predict the tendency of specific
sequence regions to form cross-β structures. ANuPP, a
more recent sequence-based method, clusters amyloido-
genic hexapeptides based on physicochemical properties
like hydrophobicity and charge, then builds individual
logistic regression models for each cluster before ensem-
ble prediction. However, due to the lack of spatial con-
text, sequence-based models may produce false positives
as they cannot determine whether a predicted APR is
buried within the hydrophobic core of a protein. Con-
versely, structure-based methods like CORDAX (Louros,
Orlando, et al., 2020), SAP (Chennamsetty et al., 2009),
Aggrescan3D (Zambrano et al., 2015), CamSol (Sormanni
et al., 2015), and AggScore (Sankar et al., 2018) incorpo-
rate three-dimensional structural information, including
atomic coordinates, surface hydrophobic patches, solvent
accessibility, and the local microenvironment, to enhance
predictive performance. Aggrescan3D, for instance, com-
bines amino acid properties with solvent accessibility and
spatial proximity, while CamSol adjusts intrinsic aggrega-
tion scores based on the solvent-accessible surface area of
residues, facilitating more precise identification of aggre-
gation hotspots, especially on protein surfaces. Despite
their enhanced precision, these methods are limited by
the availability of high-quality protein structural data,
which is often scarce.

Given the significant limitations of current models,
necessitated by inadequate and unbalanced training data
and the sparse availability of high-resolution protein
structures, there is a pressing need for more advanced
methodologies. Recent breakthroughs in computational
biology, such as the development of large-scale protein
language models, like ESM2 (Lin et al., 2023), and
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cutting-edge protein structure prediction models repre-
sented by AlphaFold2 (Tunyasuvunakool et al., 2021),
have provided us potentially breakthrough solutions to
solve the challenging aggregation prediction problem.
These tools allow for the extraction of rich, contextual
representations from amino acid sequences and have
demonstrated remarkable accuracy in predicting three-
dimensional protein structures directly from sequences.
By integrating these advanced models, we propose Agg-
Net, a comprehensive framework that leverages physio-
chemical, sequential, and structural information to
predict protein aggregation, including amyloid peptide
prediction and protein APR identification. For amyloid
peptide prediction, AggNet utilizes the pre-trained pro-
tein language model ESM2 to extract informative repre-
sentations and further fuse with traditional AAindex
(Kawashima, 2000) features for amino acid sequence
modeling. For APR identification, it employs the three-
dimensional structures predicted by AlphaFold2 to incor-
porate spatial information. By combining the strengths of
both sequence and structure-based approaches, AggNet
aims to overcome their respective limitations and address
the issue of data insufficiency. Our benchmark compari-
sons confirm that AggNet outperforms existing methods
across various datasets. Additionally, a case study on
MEDI1912 further verifies AggNet's effectiveness for pro-
tein engineering to rank different variants. Our findings
suggest that AggNet is a useful tool for studying protein
aggregation and can contribute significantly to the devel-
opment of therapeutic proteins and novel biomaterials.

2 | RESULTS

2.1 | The architecture of AggNet

The architecture of AggNet, illustrated in Figure 1, com-
prises two primary submodules: APNet and APRNet.
APNet is tasked with predicting amyloid peptides, while
APRNet focuses on profiling protein APRs. APNet initi-
ates the processing of peptide inputs through one-hot
encoding and AAindex feature encoding. These encoded
features are subsequently integrated with a feature fusion
module that synthesizes an informative fused embedding.
This embedding is then input into a multilayer percep-
tron (MLP) to estimate the aggregation propensity
(AP) score of a peptide. In contrast, APRNet processes
proteins by employing both a sequential and a structural
channel. The sequential channel dissects the primary
sequence into hexapeptides, assesses them using a sliding
window approach, and scores them via the trained APNet
to predict their intrinsic aggregation scores. Concur-
rently, the structural channel folds the corresponding 3D
structure using AlphaFold2 and extracts spatial informa-
tion, including neighborhood interactions and relative
solvent accessible surface areas (RSA). After data prepa-
ration, this sequential and structural information is
aggregated at the residue level to profile the aggregation
characteristics of specific proteins. AggNet alleviates data
scarcity by leveraging ESM2 and addresses the lack of
structural data through the use of AlphaFold2. Moreover,
the novel feature fusion module integrates sequential and

FIGURE 1 Schematic of the AggNet framework. It comprises two submodules: APNet for amyloid peptide classification and APRNet

for protein APR identification.
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evolutionary information from ESM embeddings with
physicochemical data from AAindex features, thereby
enhancing the performance in both amyloid peptide clas-
sification and protein APR identification. More details
can be found in the method section.

2.2 | AggNet's discriminative power in
amyloid and non-amyloid peptide
classification

Discriminating between amyloid and non-amyloid pep-
tides is a critical task in predicting protein aggregation,
essential for understanding the formation of amyloid
fibers associated with various neurodegenerative diseases.
We first conduct a benchmark comparison using the
Hex142 dataset (see the method section) to highlight
the advantages of AggNet in classifying amyloid and non-
amyloid peptides.

First, we compare the AggNet with typical machine
learning methods and AggNet exhibits superior perfor-
mance over conventional machine learning algorithms
including k-nearest neighbor (KNN), logistic regression
(LR), Naive Bayes (NB), support vector machine (SVM),
multilayer perceptron (MLP), in discriminating between
amyloid and non-amyloid peptides. The comparative
analysis, detailed in Tables S1 and S2, highlights Agg-
Net's advancement over both basic one-hot feature-based
models and more complex AAindex feature-based models,
demonstrating a significant improvement in both F1
score and Matthews correlation coefficient (MCC).
Importantly, while the best performing traditional
models like MLP (using one-hot features) and Logistic
Regression (using AAindex features) achieve an AUC of
up to 0.902, AggNet surpasses these with notably higher
F1 scores and MCC values, exceeding 80% in F1 score,
indicative of its balanced prediction capability.

Furthermore, we compare the performance between
AggNet and existing methods to show its superiority.
The benchmark comparisons outlined in Table 1

confirm AggNet's state-of-the-art performance in amy-
loid peptide classification across various metrics includ-
ing accuracy (ACC), sensitivity (SP), specificity (Q), F1
score, MCC, and area under the curve (AUC). AggNet
achieves an accuracy of 87.3%, sensitivity of 80.4%, spec-
ificity of 91.2%, F1 score of 82.0%, MCC of 0.723, and
AUC of 0.913, which is notably higher than the next
best method, ANuPP, by about 3.0% in AUC and 4.2% in
F1 score. This superior performance, particularly in bal-
ancing precision and recall in an unbalanced training
dataset, underscores the potential of protein language
models in enhancing peptide representation for
improved amyloid prediction. Additionally, we con-
ducted a fivefold cross-validation using the widely rec-
ognized WALTZ-DB 2.0 dataset to further assess
AggNet's performance relative to existing methods.
Results detailed in Table S3 reaffirm AggNet's superior-
ity over contemporary approaches.

2.3 | AggNet's proficiency in
identifying APRs

Identifying APRs helps pinpoint the aggregation hotspots
within specific proteins, enhances understanding of
aggregation mechanisms, and informs strategies to miti-
gate aggregation. Similarly, we conduct a benchmark
study to validate the superiority of AggNet in performing
this task across diverse proteins.

AggNet sets a new standard in identifying APRs of
various proteins, outperforming existing models as
shown in Table 2. It demonstrates substantial gains
across all performance metrics compared with the
second-best model, ANuPP. For instance, AggNet
achieves a Segment Overlap (SOV) Overall score of 54.6
and an SOV Average score of 51.4, surpassing ANuPP by
8.8% and 5.5%, respectively. The significant performance
drop when excluding structural information from Agg-
Net's inputs highlights the critical role of spatial data in
achieving these results.

TABLE 1 Benchmark comparison

of amyloid peptide classification on the

Hex142 dataset.

Model ACC (%) SE (%) SP (%) Q (%) F1 (%) MCC AUC

TANGO 64.8 5.9 97.8 51.8 10.7 0.096 0.597

WALTZ 75.4 39.2 95.6 67.4 53.3 0.446 0.675

GAP 51.4 94.1 27.5 60.8 58.2 0.260 0.721

FishAmyloid 69.0 45.1 82.4 63.8 51.1 0.296 0.798

Pasta2 75.4 37.3 96.7 67.0 52.1 0.450 0.855

Aggrescan 79.6 68.6 85.7 77.2 70.7 0.551 0.855

ANuPP 83.1 82.4 83.5 82.9 77.8 0.645 0.883

AggNet 87.3 80.4 91.2 85.8 82.0 0.723 0.913
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Moreover, AggNet's ability to identify APRs across
diverse secondary structures—helices, strands, or coils—
is visually depicted in Figure 2. Notable examples include
the experimental APRs of Apolipoprotein C-II, predomi-
nantly α-helical, and Gamma-crystallin D, primarily
β-strand, alongside Chorion class A protein PC292, which
is mostly coiled. AggNet's predictions align closely with
experimental data, albeit with slight deviations at the res-
idue level, exemplifying its precision in localizing APRs
across different protein structures. Specifically, the pre-
dicted APR of Apolipoprotein C-II is located in residues
61–76 while the experimental one is in residues 60–70
(Wilson et al., 2007). The predicted APR of Gamma-
crystallin D is located in residues 91–146 while the exper-
imental one is in residues 80–163 (Moran, Decatur, &
Zanni, 2012; Moran, Woys, et al., 2012). The predicted

APR of Chorion class A protein PC292 is located in resi-
dues 46–103 while the experimental one is in residues
48–96 (Iconomidou et al., 2006).

2.4 | Ablation study and feature analysis

The input of AggNet is one-hot encodings of original pep-
tide sequences and the corresponding AAindex features.
AggNet's sophisticated integration of ESM embeddings
and AAindex features results in an informative fused
embedding that transcends traditional one-hot encoding
and simple feature-based approaches. This fusion cap-
tures both sequence evolution information from ESM
embeddings and physiochemical data from AAindex fea-
tures, significantly enhancing the model's discriminatory

TABLE 2 Benchmark comparison of protein APR identification on the Amy37 dataset.

Model SOV APR SOV non-APR SOV overall SOV average Total scorea

Pasta2 13.2 24.9 23.2 19.1 42.3

WALTZ 44.4 28.9 28.7 36.6 65.3

FishAmyloid 14.5 45.2 37.5 29.9 67.4

Aggrescan 34.3 36.5 32.4 35.4 67.8

TANGO 19.1 57.8 48.1 38.5 86.6

ANuPP 45.2 52.3 50.2 48.7 98.9

AggNet (w/o structure) 27.2 59.2 51.0 43.2 94.3

AggNet 48.1 54.6 54.6 51.4 106.0

aTotal score = SOV overall + SOV average.

FIGURE 2 Comparison of predicted and experimental APRs. APRs are indicated in red. (a) Experimental APR of Apolipoprotein C-II.

(b) Predicted APR of Apolipoprotein C-II. (c) Experimental APR of Gamma-crystallin D. (d) Predicted APR of Gamma-crystallin

D. (e) Experimental APR of Chorion class A protein PC292. (f) Predicted APR of Chorion class A protein PC292.
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capabilities. To enhance our understanding of AggNet's
prediction mechanisms and improve its interpretability,
we conduct an ablation study and feature analysis on the
learned fused embeddings.

The results of the ablation study presented in
Table S4 illustrate a significant decline in performance
when the model is deprived of either ESM2 embeddings
or AAindex features. Similarly, the removal of element-
wise multiplication without a skip connection in the fea-
ture fusion process also leads to a comparable decrease in
performance. These findings underscore the crucial
impact of the feature fusion strategy on the final classifi-
cation outcomes. By integrating our specifically designed
feature strategy for ESM2 embeddings and AAindex fea-
tures, the model achieves a more balanced predictive per-
formance, particularly in the discrimination of amyloid
peptides. This balance is vital for enhancing the model's
accuracy and reliability in practical applications.

Dimensionality reduction and visualization using
t-SNE (Hinton & Roweis, 2002), illustrated in Figure 3,
reveal clear distinctions between amyloid and non-
amyloid peptides. This separation is especially evident
among peptides with varying counts of hydrophobic resi-
dues, demonstrating AggNet's ability to accurately reflect
the physiochemical properties of peptides. It is evident
that peptides with a lower number of hydrophobic resi-
dues (0–2) tend to cluster together, in contrast to peptides
with a higher count (5–6), which are grouped separately.
Peptides with a moderate number of hydrophobic resi-
dues (3–4) are distributed between these two extremes.
This pattern underscores the model's capability to discern
and represent the physicochemical properties of peptides
effectively. Such clear stratification enhances the inter-
pretability of how AggNet discriminates between amyloid

and non-amyloid peptides, showcasing its analytical
strength.

2.5 | Case study: MEDI1912 antibody

To further validate AggNet's utility in protein engineering
aimed at reducing aggregation, we analyzed variants of
the MEDI1912 antibody using the tripartite β-lactamase
enzyme assay (TPBLA). This novel in vivo method corre-
lates with traditional aggregation assays like HP-SEC and
AC-SINS, as evidenced by the area under the bacterial
growth curve measurements (Ebo et al., 2020).

Analysis of MEDI1912 and its variants—specifically,
STT and M139—using AggNet revealed distinct APR
score distributions in their VH domains, shown in
Figure 4. Notably, the STT variant, known for its reduced
aggregation propensity (Dobson et al., 2017), and M139,
the most effective variant evolved by TPBLA (Ebo
et al., 2020), showed significant differences in the CDRH1
region compared with wild-type MEDI1912. Specifically,
the predicted scores by AggNet show that WFL has a
high peak in the CDR1, STT has a lower peak, while the
M139 eliminates the peak. These findings align well with
experimental outcomes, demonstrating AggNet's poten-
tial to predict how specific mutations influence aggrega-
tion tendencies.

Additionally, AggNet's ability to rank the aggregation
propensity of MEDI1912 variants was rigorously tested.
The model's predictions for the seven specific variants at
specific sites correlate strongly with experimental in vivo
growth (A.U.) values, with Pearson and Spearman corre-
lation coefficients of �0.86 and �0.95, respectively. Con-
sistent with the experimental results, WFL exhibits the

FIGURE 3 The t-SNE visualization of peptide embeddings in AggNet. (a) Peptides are depicted as scatter points, color-coded by their

labels: Amyloid or non-amyloid. (b) Peptides are color-coded based on the count of hydrophobic residues they contain.
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highest aggregation propensity and receives the highest
predicted score, while STT shows the converse. Hence,
we verify the efficacy of AggNet to guide the mutation
design for aggregation mitigation by scoring different
protein variants of MEDI1912.

Furthermore, we evaluated whether AggNet remains
effective when applied to WFL variants harboring multi-
ple mutations. A total of 162 variants evolved via TPBLA
were analyzed, 115 of which contain more than three
mutations (Ebo et al., 2020). The results are presented in
Figure 5b, omitting the seven variants of WFL previously
discussed. The scatter plot delineates a negative correla-
tion between predicted aggregation scores and in vivo
growth rates (A.U.), suggesting an intuitive inverse rela-
tionship. Although the specific predicted values lack

precision, they generally mirror the trend observed in
experimental data: higher aggregation propensities corre-
late with reduced experimental growth rates. Notably,
AggNet demonstrates superior performance with a Pear-
son correlation coefficient of �0.32 and a Spearman cor-
relation coefficient of �0.34, surpassing state-of-the-art
methods Aggrescan3D and CamSol, as shown in Table 3.

FIGURE 4 Aggregation profile of the VH Domain in WFL, STT, and M139 as predicted by AggNet. The CDR regions are highlighted

in gray.

FIGURE 5 Performance of AggNet on the MEDI1912 dataset from TPBLA in vivo experiments. (a) Scatter plot of different WFL

variants with mutations in specific sites. (b) Scatter plot of WFL variants evolved by TPBLA.

TABLE 3 Performance comparison on MEDI1912 dataset.

Model Pearson r Spearman r

Aggrescan3D �0.07 �0.11

CamSol 0.29 0.29

AggNet �0.32 �0.34

HE ET AL. 7 of 12

 1469896x, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.70031 by K

ing A
bdullah U

niv. O
f Science &

 T
ech K

aust, W
iley O

nline L
ibrary on [11/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



This comparison further underscores AggNet's advantage
in ranking protein variants, efficiently capturing the
impact of multiple mutations on the aggregation land-
scape without necessitating recalibration or additional
data. Collectively, these findings corroborate the utility of
AggNet in protein aggregation studies and its potential in
guiding mutation design to reduce aggregation in thera-
peutic proteins.

3 | DISCUSSION AND
CONCLUSION

In this study, we introduced AggNet, a deep learning
framework that leverages physicochemical, sequential,
and structural information to address the challenge of
protein aggregation, including amyloid peptide prediction
and protein APR identification. To mitigate the issue of
insufficient data and to derive more informative amino
acid sequence embeddings, we utilized the protein lan-
guage model ESM2 (Lin et al., 2023) for feature extrac-
tion. We further enhanced the integration of
physicochemical features and evolutionary information
from ESM2 through a feature fusion layer, facilitating the
learning of fused embeddings.

Performance comparisons in amyloid peptide classifi-
cation and analyses of the fused embedding landscape
affirm the efficacy of our feature fusion approach. More-
over, to augment the prediction accuracy in APR identifi-
cation, we employed AlphaFold2 (Mirdita et al., 2022;
Tunyasuvunakool et al., 2021) to model the correspond-
ing structures and extract spatial information. By leverag-
ing aggregation scores from neighboring residues and
their RSA, AggNet achieved state-of-the-art performance,
significantly outperforming existing methods. Visual
comparisons of predicted and experimental APRs across
various secondary structures—helices, strands, and
coils—illustrate AggNet's precision in locating APRs.

AggNet addresses several limitations of existing
models in predicting APRs in proteins. Sequence-based
models such as ANuPP often struggle to identify the
hydrophobic core of proteins, leading to a high rate of
false positive predictions. In contrast, AggNet not only
incorporates sequential context to score each residue but
also leverages spatial neighbor information, resulting in
more reliable APR predictions and a reduced false posi-
tive rate. Similarly, while Aggrescan3D relies on a scoring
formula based on intrinsic aggregation scores derived
from prior experimental data, these scores are static for a
given residue regardless of its context within the protein
structure, thereby constraining performance. AggNet
overcomes this limitation by dynamically computing the
intrinsic aggregation score for each residue based on its

sequential context, utilizing APNet, a deep learning-
based framework. This approach enhances the flexibility
and accuracy of the scoring process.

Beyond benchmark comparisons, we employed the
MEDI1912 antibody as a case study to simulate a real-
world protein engineering task. This included an exami-
nation of how AggNet's predicted APR profiles influence
experimental outcomes by comparing the APR score
landscapes in the VH domains of WFL, STT, and M139
variants. We also assessed AggNet's ranking performance
on WFL variants with three mutations and on TPBLA-
evolved WFL variants with more than three mutations.
The results confirmed that, even without recalibration or
fine-tuning with additional data, AggNet provides reason-
able predictions, underscoring its utility in protein engi-
neering for aggregation mitigation.

AggNet represents a valuable tool for protein aggrega-
tion research and has potential applications in protein
engineering. The integration of deep learning technology
and protein language models offers promising insights
for this field. However, there are limitations to AggNet,
such as its suboptimal blind test performance in down-
stream tasks, like protein engineering, where it does not
directly offer mutational recommendations. Besides, pre-
dicting aggregation effects of multiple mutations is still
challenging for AggNet. Advancing the development of
more effective aggregation prediction models remains
both challenging and essential, particularly for variants
that exhibit multiple mutations. Continued innovation
from the computer science and deep learning communi-
ties is expected to further advance the field, enhancing
the predictive accuracy and utility of protein aggregation
prediction.

4 | MATERIALS AND METHODS

4.1 | Dataset preparation

For amyloid peptide identification, we have two schemes
including train-test and cross-validation. For the train-
test split, we used the Hex1421 dataset, which comprises
1421 experimentally validated amyloidogenic and non-
amyloidogenic hexapeptides sourced from the CPAD 2.0
database (Rawat et al., 2020). This dataset is non-
redundant, ensuring a broad representation of peptide
varieties. We adhered to a 90%:10% division for training
(Hex1279) and testing sets (Hex142), respectively, result-
ing in 1279 peptides for training and 142 for validation,
maintaining consistency with the train-test split used in
ANuPP. Detailed dataset characteristics are provided
in Table S5. For the additional fivefold cross-validation, a
dataset comprising 1416 non-redundant peptides was
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curated from WALTZ-DB 2.0 (Louros, Konstantoulea,
et al., 2020), which stands as one of the largest publicly
accessible repositories of experimentally validated amy-
loidogenic peptides. This dataset includes 901 amyloid
hexapeptides and 515 non-amyloid hexapeptides. Each
fold is based on a 4:1 stratified sampling of amyloid and
non-amyloid categories to avoid data bias.

For protein APR identification, we adopted ANuPP's
methodology, selecting 162 proteins from the AmyPro
database (Varadi et al., 2018). Proteins with unclear or
ambiguous APR annotations or those with APR residue
fractions outside the 10%–95% range were excluded. We
applied CD-HIT (Huang et al., 2010) to cluster these
sequences at 40% sequence identity to reduce redun-
dancy, culminating in a distilled set of 54 non-redundant
proteins. These were further divided based on the pres-
ence of hexapeptides into two subsets: Amy17, containing
proteins with more than one hexapeptide overlapping
with Hex1279, and Amy37, comprising proteins with
none or one hexapeptide from Hex1279, serving respec-
tively for calibration and assessment.

In the context of a case study on MEDI1912, a tar-
geted dataset was compiled, consisting of seven scFv vari-
ants of WFL, each displaying mutations at specified sites.
The specific variants, derived via TPBLA (Ebo
et al., 2020), include WFT, WTL, WTT, SFL, STL, SFT,
and STT, where “WFL” denotes W35/F36/L64, “STT” sig-
nifies S35/T36/T64 mutations, and so on. Additionally, a
more extensive dataset of scFv variants evolved through
TPBLA, was acquired from the corresponding author for
comprehensive analysis. The detailed statistical informa-
tion of these mutants is summarized in Table S6.

4.2 | Model architecture

4.2.1 | APNet architecture

APNet integrates the ESM2 module, a feature engineer-
ing module, a feature fusion module (illustrated in
Figure S1), and a prediction module. Based on existing
research and insights from biophysics, the amyloidogenic
properties of peptides are primarily influenced by their
intrinsic physicochemical characteristics. To capture
these properties, we employ features derived from the
AAindex database to represent each peptide. In addition
to traditional feature representations like AAindex,
recent studies have demonstrated that protein language
models, such as ESM2, are capable of effectively learning
sequential, evolutionary, and physicochemical features of
amino acid sequences, achieving notable performance
across various tasks. Therefore, we hypothesize that inte-
grating these two complementary and diverse feature

sets—AAindex-derived features and representations from
protein language models—can enhance the model's abil-
ity to discern the discriminative boundary between amy-
loidogenic and non-amyloidogenic peptides. ESM2
extracts embeddings for each residue, producing a
1280-dimensional vector encapsulating evolutionary and
sequential information. These are dimensionally reduced
to 256 dimensions via a multilayer perceptron (MLP)
(Taud & Mas, 2018) and aggregated through mean pool-
ing to form a peptide-level representation, denoted as x.
In parallel, the feature engineering module initially nar-
rows down the set of 3396 AAindex features to the
600 most informative ones using ANOVA. Subsequently,
this refined dataset is processed through an additional
MLP to transform the non-redundant physicochemical
AAindex features into a 256-dimensional embedding,
denoted as y. These embeddings, denoted as x and y, are
then combined in the feature fusion module to form a
more expressive representation z¼ f x,yð Þþx¼ x � yþx.
Here, we utilize element-wise multiplication and skip
connection (He et al., 2016) for feature expression capa-
bilities enhancement and efficient learning, respectively.
This fused representation is further processed by the final
MLP in the aggregation prediction head to yield the
final aggregation propensity score, with higher scores
indicating a greater intrinsic propensity for aggregation.

4.2.2 | APRNet architecture

APRNet comprises modules for sequence information
extraction, structure prediction, and score aggregation.
For sequence data, protein sequences are dissected into
hexapeptides using sliding windows, each scored via
APNet. The intrinsic aggregation score for each residue is
calculated as the average score from all hexapeptides
encompassing that residue. For instance, the aggregation
score for residue with index 9 is the average of the pre-
dicted scores for hexapeptides spanning residues 4–9, 5–
10, 6–11, 7–12, 8–13, and 9–14. For the structure part,
AlphaFold2 predicts the protein's 3D structure, facilitat-
ing the computation of an adjacency matrix and relative
solvent accessible surface area (RSA) for each residue to
identify spatial neighborhoods within an 8 Å radius and
determine exposure levels. The aggregation score for each
residue is adjusted based on its neighbors' scores, their
distances, and RSA, following the formula:
Ei ¼

P
j
sj � eα�rj � eβ�dj , where α and β are tunable parame-

ters reflecting the increased aggregation contribution
from surface-exposed residues and proximal neighbors
(B�arcenas et al., 2024). APRs are then delineated by iden-
tifying peak scores above a set threshold tpeak and extend-
ing these peaks in both directions to include neighboring
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residues scoring above a secondary threshold texpand.
These parameters α,β, tpeak, texpand

� �
are optimized using

the Amy17 dataset (Prabakaran et al., 2021).

4.2.3 | Training settings

The ESM2 module was kept frozen when training to pre-
vent catastrophic forgetting caused by limited training
data. This precaution ensures that the pre-trained model
retains its learned features without adverse modifica-
tions. Alongside, we utilized the AdamW optimizer,
favored for its adept management of weight decay and
enhanced convergence characteristics, with an initial
learning rate of 2e�4. This rate was carefully chosen to
accelerate training while maintaining the stability of the
learning process. To address potential exploding gradient
problems, we implemented gradient clipping with a norm
threshold set at 1.0. APNet was trained for 25 epochs
using batch sizes of 50 because we found that extending
the training period led to negligible performance
improvements. This batch size effectively balances com-
putational resource utilization and the accuracy of gradi-
ent estimates, optimizing overall training efficiency. For
hyper-parameters searching, we use the AutoML tech-
nique to determine the best one.

4.3 | Evaluation metrics

For the amyloid peptide identification, common binary
classification metrics are used to evaluate the perfor-
mance of the proposed methods, including accuracy
(ACC), sensitivity (SE), specificity (SP), Q score, F1 score,
and Matthew correlation coefficient (MCC). The formu-
las of these metrics are described as follows:

ACC¼ TPþTN
TPþTNþFPþFN

SE¼ TP
TPþFN

SP¼ TN
TNþFP

Q¼ SEþSP
2

F1¼ 2TP
2TPþFNþFP

MCC¼ TP�TNþFP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFNð Þ TNþFPð Þp

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

where TP is the number of true-positive samples, FP is
the number of false-positive samples, TN is the number
of true-negative samples, and FN is the number of false-
negative samples. Besides, another metric called the area
under the receiver operating characteristic curve (AUC)
is used for the overall performance evaluation.

For the protein APR identification, Segment OVerlap
(SOV) (Zemla et al., 1999) scores evaluate the prediction
accuracy based on the overlap between the predicted and
actual segments instead of residues, which is more appro-
priate for segment prediction similar to secondary struc-
ture prediction. Four different SOV scores, SOV APR,
SOV non-APR, SOV Overall, and SOV Average are used
to evaluate the performance of predicting APRs in pro-
teins. The formulation of these metrics is described
below:

S ið Þ¼ si1,s
i
2

� �
:∃si2s

i
1\ si2 ≠ ;� �

S0 ið Þ¼ si1,s
i
2

� �
: 8si2si1\ si2 ¼;� �

δ si1,s
i
2

� �¼ min maxov si1,s
i
2

� ��minov si1,s
i
2

� �� �
,

(

minov si1,s
i
2

� �
,
L si1
� �
2

� �
,
L si2
� �
2

� �)

Si ¼
P

S ið Þ
minov si1,s

i
2

� �þδ si1,s
i
2

� �
maxov si1,s

i
2ð Þ �L si1

� �
Ni ¼

P
S ið ÞL si1

� �þP
S0 ið ÞL si1

� �
SOVAPR¼ SOV 1ð Þ¼ S1

N1
�100

SOVnonAPR¼ SOV 0ð Þ¼ S0
N0

�100

SOVAVG¼ SOV 1ð ÞþSOV 0ð Þ
2

SOVOverall¼ S0þS1
N0þN1

�100:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where si1 is the segment of the ground truth label with
state i and si2 is the segment of the predicted label
with state i. State i¼ 1 and i¼ 0 denote the APR region
and non-APR region, respectively. maxov si1,s

i
2

� �
and

minov si1,s
i
2

� �
are the maximal and minimal overlap the

length between si1 and si2. L si1
� �

and L si2
� �

are the length
of si1 and si2.
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