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Abstract
Motivation: Unveiling the heterogeneity in the tissues is crucial to explore cell-cell interactions and cellular 
targets of human diseases. Spatial transcriptomics (ST) supplies spatial gene expression profile which has 
revolutionized our biological understanding, but variations in cell type proportions of each spot with dozens of 
cells would confound downstream analysis. Therefore, deconvolution of ST has been an indispensable step and 
a technical challenge towards the higher-resolution panorama of tissues.
Results: Here, we propose a novel ST deconvolution method called SD2 integrating spatial information of ST 
data and embracing an important characteristic, dropout, which is traditionally considered as an obstruction in 
single-cell RNA sequencing data (scRNA-seq) analysis. First, we extract the dropout-based genes as informative 
features from ST and scRNA-seq data by fitting a Michaelis-Menten function. After synthesizing pseudo-ST 
spots by randomly composing cells from scRNA-seq data, auto-encoder is applied to discover low-dimensional 
and non-linear representation of the real- and pseudo-ST spots. Next, we create a graph containing embedded 
profiles as nodes, and edges determined by transcriptional similarity and spatial relationship. Given the graph, a 
graph convolutional neural network is used to predict the cell-type compositions for real-ST spots. We benchmark 
the performance of SD2 on the simulated seqFISH+ dataset with different resolutions and measurements which 
show superior performance compared with the state-of-the-art methods. SD2  is further validated on three real-
world datasets with different ST technologies, and demonstrates the capability to localize cell-type composition 
accurately with quantitive evidence. Finally, ablation study is conducted to verify the contribution of different 
modules proposed in SD2.
Availability: The SD2 is freely available in github (https://github.com/leihouyeung/SD2) and Zenodo 
(https://doi.org/10.5281/zenodo.7024684).
Contact: xin.gao@kaust.edu.sa

1 Introduction 
Understanding the arrangement of cells and tissues, and its impact on 

biological function is a fundamental pursuit in life science research 
(Method of the Year 2020: spatially resolved transcriptomics 2021). 
Spatially resolved transcriptomics (Ståhl Patrik. et al. 2016), which aims 
to characterize the gene expression profiles while retaining information of 
spatial tissue context, sheds light on the understanding of structure and 
function of cells and tissues in recent years (Burgess 2019). This technique 
renders the panorama for the organization and heterogeneity of complex 
tissues by equipping multimodal data containing gene expression profiles 
with spatial information by capturing the mRNA population of molecules 

in situ and the super-resolution histological staining image integrating 
morphological features (Andrews and Hemberg 2019). Spatial 
transcriptomics (ST) technique has been utilized for exploring the 
biological mechanisms among a variety of diseases, tissues and species, 
such as human heart (Asp et al. 2019), mouse brain (Cantin et al. 2021), 
Alzheimer's disease (W.-T. Chen et al. 2020) and so on. 
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The cellular composition of biological samples is heterogeneous and 
varying inherently. Characterizing the variation of cell-type composition 
across subjects could identify cellular targets of diseases. On the other 
hand, adjusting for these variations could also clarify the cell-cell 
interactions and reconstruct the topological and spatial distribution of all 
cell types (Czerwińska 2018, Avila Cobos et al. 2020, R. Dong and Yuan 
2021). The traditional way of bulk sequencing may confound downstream 
data analysis because less abundant cell types will be masked by that of 
more abundant ones (M. Dong et al. 2021, Jin and Liu 2021). The ability 
to measure the cellular heterogeneity under specific conditions is therefore 
critical. However, in the original few generations of ST techniques, the 
resolution of ST data is much lower than the single-cell level. For instance, 
the 10X Visium, a commonly-used ST technique developed by 10X 
Genomics, utilizes the spots with 50 μm diameter containing 10-20 cells 
on average. Thus, unveiling the mixture of cells in the ST spots is a key to 
depict the precise panorama for the tissues and advance better 
understanding of the precise tissue organization. 

To tackle this problem, several methods have been proposed. 
SPOTLight (Elosua-Bayes et al. 2021) integrates ST and single-cell RNA 
sequencing (scRNA- seq) data to infer the cell types of spots in the tissue 
by seeded non-negative matrix factorization (NMF) regression and non-
negative least squares (NNLS) to subsequently deconvolute ST spots. The 
performance of SPOTLight shows that it could return accurate predictions 
with shallow sequenced references. DSTG (Su and Song 2020) utilizes the 
graph-based model to accurately deconvolute the ST spots and reveal the 
spatial architecture of cellular heterogeneity in tissues. DSTG has great 
quantitative performance in benchmarking scRNA-seq of different 
protocols and identifying cellular heterogeneity in mouse cortex layer, 
hippocampus slice and pancreatic tumor tissues. Cell2location 
(Kleshchevnikov et al. 2020), a principled and versatile Bayesian model, 
integrates the scRNA-seq and ST data to map cell types in situ in a 
comprehensive manner. The applications on several data sets demonstrate 
that cell2location could serve as a versatile first-line analysis tool to map 
tissue architectures. Despite the technical advances, these state-of-the-art 
methods did not utilize the spatial information among the spots and the 
nonlinear relationship behind various genes. In addition, dropout has been 
considered as non-informative component by these methods, although 
both ST and scRNA-seq data show the nature of containing extremely 
high levels of dropout which may contribute to the deconvolution of ST. 

Here we propose a novel method called SD2, which integrates spatial 
information and embraces an important characteristic, traditionally 
considered as an obstruction in scRNA-seq analysis, called dropout 
information, through graph convolutional networks (GCN). In SD2, 

scRNA-seq data with cell-type annotations are complementary resource 
to generate pseudo-ST data. SD2 explicitly utilizes the dropout-based 
genes of scRNA-seq and ST data, as well as spatial information of all spots 
as additional information. Nonlinear relationship among dropout genes is 
revealed by auto-encoder (AE) to extract low-dimensional representations 
of the real- and pseudo-spots. Comprehensive benchmark and real-world 
experiments demonstrate not only the accuracy of our method over other 
methods, across various resolutions and measurements, but also the 
capability to localize the cell types accurately on different ST techniques 
from mouse brain, mouse kidney and human pancreatic tumor tissues. The 
utility of dropout information is thus guaranteed as an essential role in the 
deconvolution task. We further conduct ablation studies to evaluate the 
importance of each proposed component. 

2 Methods 

2.1 Pre-processing
For scRNA-seq data, dropout has been treated as an obstruction to be 

tackled. However, inspired by (Qiu 2020), we leverage dropout as an 
informative pattern to extract dropout-based genes from ST and scRNA-
seq data instead of highly-variable genes (HVGs). The input data are ST 
expression profile  and scRNA-seq expression profile 𝑅 ∈ ℝ𝑛𝑟 × 𝑔𝑟 𝑆 ∈

where  and  represent the number of spots and ℝ𝑛𝑠 × 𝑔𝑠 𝑛𝑟 (𝑛𝑠) 𝑔𝑟 (𝑔𝑠)
genes respectively. We analyze the distribution of dropout rates in   and 𝑅

, and find that most of dropout rates are over 80% and some of them are 𝑆
even close to 100% (Supp. Figure 1A, B). We identify the dropout-based 
genes by M3Drop (Andrews and Hemberg 2019). Through all spots in   𝑅
and cells in , a Michaelis-Menten function is fitted to the relationship 𝑆
between mean expression ( ) through cells (spots) and dropout-rate (𝐸

) for each specific gene and the gene-specific parameter  is 𝑃𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝐾𝑖

estimated by this function. Through the following equation, the global 
parameter  is optimized by maximum likelihood estimation across all 𝐾𝑀

genes.

𝑃𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 1 ―
𝐸

𝐸 + 𝐾𝑀
.#(1)

The hypothesis is that gene-specific  is equal to . After estimating 𝐾𝑖 𝐾𝑀

the deviation error from  to , significance of each  is evaluated by 𝐾𝑖 𝐾𝑀 𝐾𝑖

t-test. Finally, top-k significant genes  and  are chosen for  and , 𝑔𝑑
𝑟 𝑔𝑑

𝑠 𝑅 𝑆
and we use their expression profiles as the informative features for each 
spot (cell). The  are intersected genes considered as the 𝑔𝑑 =  𝑔𝑑

𝑟  ∩ 𝑔𝑑
𝑠

Figure 1 The pipeline of SD2. First, we extract the dropout genes by fitting a Michaelis-Menten function and generate the pseudo-ST spots. Then we extract the embedded feature by 

AE from pseudo-ST and real-ST spots. The pseudo-ST and real-ST spots are constructed as a graph by transcriptional similarity and spatial connection. Finally, graph convolutional 

neural network is used to output the cell-type composition for real-ST spots.
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preserved features for scRNA-seq and ST data, thus  and 𝑅 ∈ ℝ𝑛𝑟 × 𝑔𝑑 𝑆 ∈
.ℝ𝑛𝑠 × 𝑔𝑑

To mimic the gene expressional distribution of real-ST spots better 
forconstructing a homogeneous graph, we generate pseudo-ST spots by 
annotated scRNA-seq data. Inspired by the concept of Markov Chain 
Monte Carlo sampling (van Ravenzwaaij, Cassey, and Brown 2018), we 
hope that distribution of more sampled pseudo-ST spots could match the 
distribution of real-ST spots better. We randomly synthesize  cells as a 𝑚
new pseudo-ST spot whose expression vector would be  and the ∑𝑚

𝑟 𝑆𝑟/ 𝑚
proportion of specific cell-type  is  where  denotes the number 𝑐 𝑚𝑐/𝑚 𝑚𝑐

of selected cells in . The selection of  could refer to the resolution of 𝑐 𝑚
real-ST spots. For now, pseudo-ST profiles would be  , where 𝑃 ∈ ℝ𝑛𝑝 × 𝑔𝑑

 denotes the number of pseudo-ST spots. Then,  and  are divided by 𝑛𝑝 𝑃 𝑅
the library size through the spots and multiplied by a size factor of 10000 
for normalization. Through generating pseudo-ST spots, the density 
distribution of counts in pseudo-ST is closer to real-ST than scRNA-seq 
which means that pseudo-ST generation could mimic the pattern of real-
ST better than using individual cells directly (Supp. Figure 1C).

To preserve nonlinear relationships in the gene expression profiles of 
all spots, we utilize the AE as the embedding method of the gene 
expression vector (Dwivedi et al. 2020, Eraslan et al. 2019). We train a 
three-layer AE network to reconstruct the concatenation of  and , and 𝑅 𝑃
minimize the reconstruction error with the encoder  and decoder  𝜓 𝜙
following Equation 2. Then, we capture the embedded space with 

dimension  as the attributes of each spot after the training process. Thus, 𝑔𝑎

 and , where𝑅′ = 𝜓(𝑅) ∈ ℝ𝑛𝑟 × 𝑔𝑎 𝑃′ = 𝜓(𝑃) ∈ ℝ𝑛𝑝 × 𝑔𝑎

𝜙, 𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜙,𝜓 𝑀𝑆𝐸([𝑅, 𝑃],(𝜓 ∘ 𝜙)[𝑅, 𝑃]).#(2)

2.2 Graph construction
Now, we integrate all real- and pseudo-ST spots as nodes into an 

unweighted graph. For the edges of the graph, we define them at the 
transcriptional and spatial level. At the transcriptional level, we identify 
the mutual nearest neighbors between the spots from pseudo-ST and real-
ST data. If a pseudo-ST spot  is among the top-  nearest neighbors of 𝑠𝑝 𝑘
the real-ST spot  calculated by the K-Nearest Neighbor (KNN) algorithm 𝑠𝑟

and vice versa, we would define that there is a connected unweighted edge 
between  and .  is used to control the sparsity of the graph. This kind 𝑠𝑝 𝑠𝑟 𝑘
of connection preserves the transcriptional similarity between pseudo-ST 
and real-ST spots. Under the assumption that the expression level among 
adjacent spots tend to be similar, pseudo-ST data is useful for us to unveil 
the composition of cell types in the adjacent real-ST spots. At the spatial 
level, we define the edges among the real-ST spots relying on their spatial 
coordinates. We set the spot-to-spot horizontal distance as  and the ℎ
relative coordinates of one specific spot is , the four nearest (𝑥,𝑦)
neighbors for that spot would be: , , (𝑥 ― ℎ 2, 𝑦 ― ℎ 2) (𝑥 ― ℎ 2, 𝑦 + ℎ 2)

 and . We link these four nearest (𝑥 + ℎ 2, 𝑦 + ℎ 2) (𝑥 + ℎ 2, 𝑦 ― ℎ 2)
neighbors to that spot respectively as four unweighted edges and apply 

Figure 2 A. The figure at the top left corner shows the spatial and cell-type distribution of the seqFISH+ dataset. The top middle figure shows the ground truth of abundance of 

endothelial-mural cells in the simulated dataset. The other four figures show the corresponded deconvolution results for endothelial-mural cells from four methods. B. The three spatial 

distributions of endothelial-mural cells deconvolved by SD2 are shown through three kinds of resolution (0.5x, 1x and 2x). C. The three radial column figures compare the RMSE of 

deconvolution for each cell type on these four methods through three kinds of resolution.
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this process to all real-ST spots. This spatial connection from real-ST spots 
could enrich more real-world information for the topological structure of 
the graph. Finally, the linked graph is 

𝑋 = [𝑃′, 𝑅′] ∈ ℝ𝑁 × 𝑔𝑎, 𝑁 = 𝑛𝑝 + 𝑛𝑟#(3)

which preserves both spatial and transcriptional structure among all spots, 
and its adjacency matrix  would be𝐴 ∈ ℝ𝑁 × 𝑁

𝐴𝑖𝑗 = { 1, 𝑖𝑓 𝑖~𝑗,  
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. #(4)

2.3 SD2

As mentioned above, adjacent spots tend to have similar gene 
expression patterns. We could unveil the cell-type composition of real-ST 
spots by utilizing the adjacent pseudo-ST spots with known cell-type 
composition, which could be formulated as a semi-supervised problem 
and it comes to GCN as a proper solution. GCN also has the ability for 
aggregating the graph signals within the node neighborhood which shows 
capabilities to learn the graph representations and achieves superior 
performance in a wide range of tasks and applications (Chen et al. 2020). 
GCN was originally used in the node classification problem (Kipf and 
Welling 2016). In that task, the output would contain the probabilities of 
all classes for each node which would be classified as the class with the 
highest probability. Since probabilities of all classes for each node are 
added up to 1 after that softmax activation function, here we treat the 
classes as cell types and the output probabilities as the composition of all 
cell types in our case (Figure 1).

The input data of SD2 are expression matrix  and it’s adjacency matrix 𝑋
of the constructed graph . These input data would be fed into GCN with 𝐴
three convolutional layers. To preserve the information of the nodes 
themselves and train the network more efficiently, the new adjacency 
matrix is defined as , where  and  is the 𝐴 =  𝐷 ― 1 2𝐴𝐷 ― 1 2 𝐴 = 𝐴 + 𝐼 𝐷
degree matrix of . Each layer of GCN could be defined as 𝐴

𝐻(𝑙 + 1) = 𝑓(𝐻(𝑙),𝐴) = 𝜎(𝐴𝐻(𝑙)𝑊(𝑙)) = 𝑅𝑒𝐿𝑈(𝐴𝐻(𝑙)𝑊(𝑙)),#(5)

where  is the previous layer,  is the weight of layer  and we use 𝐻(𝑙) 𝑊(𝑙) 𝑙
ReLU as the activation function after each graph convolutional layer. At 
the output of three convolutional layers, we use softmax as the activation 
function to normalize the output into the range of . Through the [0,1]
network, the cross-entropy is used as the loss function. The output matrix 

 represents the cell-type composition matrix 𝐶 = [𝐶𝑝, 𝐶𝑟] = (𝑐𝑡𝑛) ∈ ℝ𝑇 × 𝑁

of all pseudo-ST and real-ST spots  spots totally) through  cell types (𝑁 𝑇
and the composition of cell type  in spot  would be . The sum of 𝑡 𝑛 𝑐𝑡𝑛

vector  would be 1 in each spot. Thus, final output of SD2 would ∑𝑇
𝑡 = 1𝑐𝑡𝑛

be matrix .𝐶𝑟

3 Experiments 

3.1 Experimental setup
During the selection of dropout-based genes, we selected top-2000 

significant dropout-based genes and used their expression profiles as the 
feature for each spot. In the process of generating pseudo-ST spots, we 

Figure 3 A. The deconvolution results of one spot with all cell types for adult mouse brain. In the figure, each little pie chart indicates a spot with different compositions of cell types 

noted by different colors. B. UMAP figure of all spots with their highest-content cell type for each spot. Each color represents a specific cell type and all spots are mostly separated 

following the nature of expression profiles. C. The abundance of all cell types through two anterior slices and two posterior slices.  D. Comparison between the abundance of two pairs of 

cell types and their marker genes: Oligo and Mobp, L6.IT and Slc17a7. The visualized results and Pearson correlation through four slices all show great relationship of them.
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randomly mixed 10 to 20 cells for each pseudo-ST spots. In AE, we set 
the dimension of the hidden layer as 200, the batch size as 300 and epoch 
as 5. In the KNN algorithm, we set k as 100. We split the pseudo-ST data 
into 80 % as the training set, 10% as the validation set and 10% as the test 
set. As SD2 is an approach of inductive learning, the training, validation 
and test set are all utilized in the training process. The validation set is 
used for preventing overfitting where we set the epoch number of early 
stopping as 10 and the test set is used for evaluating the performance. 
Under the grid search technique for hyperparamter optimization, we used 
Adam optimizer (Kingma and Ba 2014) with the learning rate as 0.005 
among 0.001, 0.005 and 0.01, and training epochs as 200 among 100, 200 
and 300. All the experiments were implemented on the 2 Quadro M6000 
GPUs in Ubuntu 18.04 operating system.

3.2 Benchmark evaluation 
For evaluating the performance of SD2, we designed quantitive 

experiments under different resolution of spots and measurements by 
synthesizing the cells from seqFISH+ dataset (Eng et al. 2019) and 
MERFISH dataset (Moffitt et al. 2018) to mimic the spots of ST. 

seqFISH+ dataset contains 523 cells with corresponding cell-type 
annotations and spatial coordinates from the cortex of mouse brain at the 
single-cell resolution. The 6 cell types of the seqFISH+ dataset are 
clustered and annotated by the cell type reference of the scRNA-seq 
dataset (Amit et al. 2015) from the same tissue: excitatory neurons 
(eNeuron), inhibitory neurons (iNeuron), astrocytes, oligodendrocytes 
(Olig), microglia cells, and endothelial-mural cells (endo_mural) (Figure 
2A). To simulate the low-resolution profiles, we devided these cells by 
multiple squares and considerd one square as a simulated spot with ground 
truth of cell-type proprotions. We designed three side lengths of squares 

to simulate different resolution of spots (25.75 μm (0.5x), 51.5 μm (1x) 
and 103 μm (2x)) whose resolutions are 1.2, 4.5 and 15.7 cells in each spot 
averagely. 

To benchmark the performance of SD2, we compared with other three 
methods: SPOTLight (Elosua-Bayes et al. 2021), DSTG (Su and Song 
2020) and cell2location (Kleshchevnikov et al. 2020). We chose to 
visualize the distribution of proportion of the endothelial-mural cells 
which has local and distinct pattern of composition among SD2 and the 
other three compared methods.  Through the comparsion with ground truth, 
we observed that SD2 outperformed the other three methods in root mean 
square error (RMSE) and Jensen-Shannon Divergence (JSD). In particular, 
SD2  has RMSE of 0.06 and JSD of 0.21 which shows the most similar 
pattern compared with ground truth (Figure 2A). We also visualized the 
proportion of endothelial-mural cells deconvolved by SD2 through 0.5x, 
1x and 2x resolutions (Figure 2B). The visualization and corresponding 
RMSE showed the consistent outperformace over SOTA which 
demonstrated the robustness of SD2. To identify the ability of 
deconvolution for each cell type, we showed three radial column figures 
to compare the RMSE of deconvolution for each cell type on these four 
methods through three kinds of resolution (Figure 2C). SD2 performed 
better than other three methods for the most cell types and showed the 
robustness through three kinds of resolutions. We also testified the 
computational time through these methods and the histogram through the 
different numbers of genes in ST data (3000, 6000 and 10000) showed the 
most efficiency of SD2 compared with the other three methods (Supp. 
Table 1). 

We also evaluated the performance of SD2 and three compared methods 
on the MERFISH datasets of mouse brain medial pre-optic area containing 
12 samples from posterior to anterior. MERFISH datasets have 135 genes 
and 59651 cells classified by 6 cell types which show the opposite 

Figure 4 A. The deconvolution results of mouse kidney. B. Comparison between deconvolution results of two cell types (PT S1 and PT S2) with their marker genes’ (Miox and 

Akr1a1) expression profiles. The Pearson correlation show great relationship between them. C. The deconvolution results of PDAC. D. The low-dimensional deconvolution results 

where each little pie chart indicates a spot with the highest-content cell type assigned by its specific color.
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condition of number of genes and spots compared with seqFISH+ 
dataset, which is helpful to testify the robustness of SD2 in these different 
extreme situations. As the simulation procedure in seqFISH+ dataset, we 
binned the square of 100×100 cells as one spot in MERFISH datasets and 
3067 spots were simulated with their real cell-type proportions. We 
visualized the deconvolution results of SD2 and three compared methods 
in all 12 samples and calculated the average RMSE and JSD of them where 
SD2 still achieved great visualized and quantitive performance compared 
with the other three methods (Supp. Figure 4).

3.4 Evaluation on real-world data
To examine the performance of SD2 on the real-world data, we 

collected three data sets: adult mouse brain, mouse kidney and pancreatic 
ductal adenocarcinoma (PDAC) (Supp. Table 2).

The cortex of mouse brain is partitioned into multiple subcortical and 
other cortical regions. The isocortex and hippocampal formation in the 
mammalian brain could greatly affect the function of perception, 
cognition, emotion, and learning (Van Essen and Glasser 2018, Rakic 
2009). To explore the heterogeneity of the adult mouse brain, we collected 
ST data of two anterior and two posterior brain slices from 10X Genomics 
generated by 10X Visium technique and the scRNA-seq data set generated 
by Smart-seq from the Allen Institute (Yao et al. 2021), which consists of 
around ten thousand cells in adult mouse cortex and hippocampus tissue 
with 22 cell types. The number of cells could supply various selections for 
generating the pseudo-ST spots. We also mapped the deconvolution 
results with spatial coordinates on the original tissue image. After 
conducting SD2, the deconvolution results of four slices from anterior 
brain and posterior brain were shown (Figure 3A, Supp. Figure 2). 

 We outputted the cell-type composition of all spots where each little 
pie chart indicates a spot with different composition of cell types noted by 
different colors. The cell type whose content in one spot is lower than 5% 
was deleted from this spot, because the maximum cell number is 20 in a 
spot by 10X Visium technique, which means that the expected number of 

such cells is lower than 1. We also visualized the two-dimensional 
projection of all spots with their highest-abundant cell type by Uniform 
Manifold Approximation and Projection (UMAP) (Figure 3B). The 
UMAP results show that the spots from different colors (cell types) were 
mostly 

separated and the spots from the same coloirs were aggregated together 
even with the low-resolution of cell-type composition which means that 

SD2 could deconvolve the spots well following the cell-type-specific 
gene-expression nature. In order to compare the change of spatial 
organization of cell type composition quantitively, we examined 
abundance of all cell types through four adjacent slices and the smoothness 
of all adundance of all cell types are shown in the Figure 3C which 
indicated the steady results of SD2 through multiuple adjacent slices.

We further assumed that the expression pattern of cell-type specific 
marker genes could reflect to the spatial distribution of  cells in that 
specific cell type, which could also be used to compare with the 
distribution of the deconvolved cell types by SD2. Based on this 

assumption, we extracted two pairs of cell types and their marker genes: 
Oligo and Mobp (Holz and Schwab 1997), and L6 and Slc17a7 (Hodge et 
al. 2019). Then, we calculated the Peason correlation and corresponding 
p-value to verify the relationship between cell-type distribution and 
marker gene’s expression. The results demonstrated the trustiness of SD2 
that through two anterior and two posterior slices, the Pearson correlation 
ranged from 0.4 to 0.6 steadily and significantly (Figure 3D). The 
visualized results of two pairs of cell type composition and the distribution 
of their marker genes’ expression profiles were also matched closely. 

We next conducted the experiments on the adult mouse kidney. The 
kidney maintains fluid, electrolyte, and metabolite balance of the body and 
plays an essential role in blood pressure regulation, red blood cell 
homeostasis and injury response. It is thus important to understand the 
cell-type heterogeneity of mouse kidney (Miao et al. 2021, Reidy et al. 
2014). We collected scRNA-seq data generated by snATAC-seq from 
adult mouse kidney including 16119 cells with 14 cell types (Miao et al. 
2021).

The ST slice of kidney was from 10X Genomics generated by 10X 
Visium technique whose resolution was 10-20 cells for each spot. We also 
outputted the cell-type composition of each spot (Figure 4A) which 
showed that PT S2 and PT S1 are the top two highest abundant cell types. 
We further compared two pairs of abundance of cell types (PT S1 and PT 
S2) and their specific marker genes’ expression profiles (Miox and 
Akr1a1) and the results showed great Pearson correlation as 0.47 and 0.39 
(Figure 4B). We then visualized the UMAP results for all spots with its 
highest-content cell type (Supp Figure 3A). From the visualization of 
UMAP and the spatial deconvolution results, we could observe that the 
entropy of cell-type distribution in mouse kidney is higher than that in the 
mouse brain which means that the cells with the same cell type in mouse 
kindey are not assembled together.

PDAC is a highly devastating and heterogenic disease for human with 
poor prognosis and rising incidence (Orth et al. 2019). It is the most 
prevalent neoplastic disease of the pancreas accounting for more than 90% 
of all pancreatic malignancies whose 5-year overall survival is less than 8% 
(Siegel, Miller, and Jemal 2018) (Kleeff et al. 2016). The ST data of 
PDAC were generated by the original spatial transcriptomics method (L. 
et al. 2016) with the low resolution of nearly 10 to 40 cells for each spot. 
We collected two ST data sets of PDAC. Paired scRNA-seq data were 
generated from the pancreatic adenocarcinoma tissue by the InDrop 
technique (Moncada et al. 2020). PDAC has 1927 cells with 21 cell types. 
We conducted the experiments on ST data with the corresponding scRNA-
seq data and showed the deconvolution results mapping with spatial 
coordinates and its low-resolution deconvolution results which meant the 
highest-abundant cell type of each spot was perserved (Figure 4C, 4D). 
We also visualized the UMAP results for all spots with the highest-
abundance cell type to observe the data separation among these cell types. 
Despite the low-resolution of these spots, we could still find the relative 
isolate patterns in UMAP results (Supp. Figure 3B). In the results of 
deconvolution, the cells with the same cell type were aggregated smoothly.

0.5x 1x 2x
Methods

RMSE JSD RMSE JSD RMSE JSD
SD2 0.188 0.198 0.169 0.216 0.191 0.153

No spatial connection 0.301 0.489 0.181 0.235 0.233 0.255
No dropout-based feature 0.280 0.431 0.188 0.245 0.228 0.237

No AE 0.315 0.482 0.182 0.230 0.238 0.253

Table 1. The ablation study compared the original SD2 and the other three conditions: no spatial connection, no dropout-based feature and no AE. The experiments were 

conducted through three resolutions of spot and measured by RMSE and JSD score. The results showed the contribution and necesscity of these proposed modules for SD2. 
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SD2

3.5 Ablation study
We conducted ablation study to explore the contribution of different 

modules in SD2 on the previous simulated seqFISH+ dataset. We 
considered four conditions: the original SD2; no spatial connection in real 
ST; no dropout genes; no AE. To replace the dropout-based genes, we 
used the HVGs as the feature for each spot by Analysis of Variance 
(ANOVA). For no spatial connection, we only conisdered the connection 
between pseudo-ST and real-ST spots. To replace the AE for embedding 
features, we used a linear dimensional reduction method called singular 
value decomposition and extracted the largest eigenvalues as the final 
features for nodes. To evaluate the contribution of each module 
comprehensively, the experiments were conducted in three kinds of 
resolutions (0.5x, 1x and 2x) and two metrics were used in each 
experiment: JSD score and RMSE (Table 1). Through the performance of 
the ablation study, RMSE and the JSD score were both obviously 
increased through the elimination of our proposed modules which means 
that each proposed module contributed to the success of SD2. 

To explore the effectiveness of dropout genes, we also designed the 
experiements on seqFISH+ datasets by three conditions (dropout genes 
only, HVGs only and both of them) in three numbers of total used genes 
(3000, 6000 and 10000 genes) (Supp. Table 3). The results with different 
conditions revealed that dropout genes achieved better performance in 
RMSE and JSD than HVGs steadily in different number of total genes. 
The combination of dropout genes and HVGs did not show lower RMSE 
and JSD in most of number of total genes which meant usage of HVGs 
may be redundant selected features in our datasets. 

4 Discussion and conclusion
In this paper, we proposed a method called SD2 for ST deconvolution, 

which follows the nature of ST to leverage dropout and spatial information 
in the paired scRNA-seq and ST data. Our comprehensive experiments 
demonstrate that SD2 reaches great quantitive and visible performance 
under different resolutions, ST techniques and metrics. The comparison 
with three state-of-the-art methods also shows the superior performance 
of SD2. Based on the transcriptional connection in ST data, we explore the 
real connection among spots by adding spatial information in ST data 
under the assumption that adjacent spots tend to have similar gene 
expression patterns. Under the high dropout rates among ST data, dropout-
based shows more utility than highly-variable-based on the selection of 
informative genes and we aim to demonstrate a new perspective that 
dropout could also play an essential role instead of an obstruction during 
the analysis of ST data.

For the success of using dropout genes in ST data, it results from several 
reasons: (1) mRNA expressions in ST are much sparser than scRNA-seq 
where dropout genes could play a more essential role than HVGs (Supp. 
Figure 1). As the figure shows, the dropout rates of scRNA-seq datasets 
are around 80% to 90%, but over 90% in ST datasets. The ST datasets has 
too few counts to select HVGs for deconvolution task. (2) The selected 
HVGs could be sensitive to the preprocessing procedure (such as 
normalization and imputation) which causes the biased selection of HVGs. 
On the other hand, some informative genes may not be highly variable in 
the expression profile. (3) Mathematically, the selection strategy of 
dropout genes we used assumed that for all genes, dropout rates and mean 
expression profiles had a non-linear relationship (Michaelis-Menten 
function) and the outlier genes could be informative to be features. This 
strategy is only suitable for high dropout rate, such as scRNA-seq and ST 
data. On the other hand, strategy of HVGs selection could be more suitable 
for sequencing techniques with high sequence depth, such as RNA-seq. In 

our study, we validated that dropout genes could be informative features 
for deconvolution task and they should also be utilized for exploring cell-
cell interaction, cell-type clustering or trajectory inference tasks further. 

Despite the success of the proposed method, there are still some 
limitations to be overcome. First, more and more methods begin to use 
scRNA-seq data to supply more fine-grained transcriptional information. 
But scRNA-seq and ST data could not be truly gathered from the same 
tissue sections which means that there must be some inconsistency which 
affects the deconvolution results for ST data. Second, SD2 could be further 
improved by utilizing the distribution of all scRNA-seq data for 
assistance. Selecting scRNA-seq data randomly to generate pseudo-ST 
spots would miss some low-abundance cell types or lose the biological 
significance. In future work, we would try to solve this issue by narrowing 
down the scale of selection to generate more realistic spots. 
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