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Abstract

The emergence of artificial intelligence agents powered by large language models marks a transformative shift in computational
biology. In this new paradigm, autonomous, adaptive, and intelligent agents are deployed to tackle complex biological challenges,
leading to a new research field named agentic bioinformatics. Here, we explore the core principles, evolving methodologies, and
diverse applications of agentic bioinformatics. We examine how agentic bioinformatics systems work synergistically to facilitate
data-driven decision-making and enable self-directed exploration of biological datasets. Furthermore, we highlight the integration
of agentic frameworks in key areas such as personalized medicine, drug discovery, and synthetic biology, illustrating their potential to
revolutionize healthcare and biotechnology. In addition, we address the ethical, technical, and scalability challenges associated with
agentic bioinformatics, identifying key opportunities for future advancements. By emphasizing the importance of interdisciplinary
collaboration and innovation, we envision agentic bioinformatics as a major force in overcoming the grand challenges of modern biology,

ultimately advancing both research and clinical applications.
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Main

Bioinformatics, a discipline rooted at the intersection of biology,
computer science, and mathematics, has undergone remarkable
evolution since its inception in the mid-20th century [1]. Ini-
tially emerging as a computational response to the increasing
complexity of biological data [2], bioinformatics was propelled
by breakthroughs in molecular biology and the development of
sequencing technologies [3]. Early milestones, such as the devel-
opment of the sequence alignment algorithms [4] and the estab-
lishment of pioneering genetic databases [5, 6], laid the foun-
dation for a field that would transform our understanding of
life. Over the decades, bioinformatics has expanded its scope
far beyond genomics, encompassing proteomics, transcriptomics,
metabolomics, and systems biology [7-10]. This growth has been
paralleled by significant advancements in computational power,
algorithm design, and data storage, enabling the integration of
machine learning and high-performance computing into bioin-
formatics workflows. These technological innovations have facil-
itated the exploration of intricate biological networks and the
modeling of cellular systems, ushering in an era of predictive and
system-level analyses [11, 12].

Today, bioinformatics stands as the cornerstone of modern
biology and medicine, driving discoveries in areas ranging from
evolutionary biology and structural genomics to personalized
medicine and synthetic biology [13]. The rapid evolution of arti-
ficial intelligence (Al) and deep learning (DL) has profoundly
affected numerous scientific disciplines [14], with bioinformatics
being no exception [15-17]. From the early conceptualization
of Al to the emergence of large language models (LLMs) [18]
and LLM-driven AI agents [19], Al has transitioned from rule-
based systems to advanced models capable of understanding,
reasoning, and interacting with complex datasets. LLM-driven
Al agents, which are autonomous systems designed to perceive
environments, make decisions, and execute actions, represent a
critical milestone in this evolution [20]. Their integration into
bioinformatics marks a paradigm shift, characterized by the use
of intelligent agents to autonomously generate, analyze, and inter-
pret biological data. This approach addresses the growing scale
and complexity of biological research, unlocking new possibilities
for innovation and collaboration [21].

The use of agent-based approaches in bioinformatics has a
well-established history. As early as the NETTAB 2001 and 2002
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workshops [22, 23], researchers explored intelligent agents to
enhance interoperability, data integration, and decision-making
across distributed biological databases. Notably, Merelli et al. [24]
introduced one of the first agent-based systems for automating
workflows and processing DNA microarray data. While today’s
focus has shifted toward LLM-based agents capable of natural
language reasoning and high-level task planning, these modern
systems still build upon the original vision of autonomous, inter-
operable agents in computational biology [25].

Conventional bioinformatics approaches have relied heavily
on manual curation and rigid workflows [26-28]. While these
methods have delivered significant insights, they are increas-
ingly limited by their scalability, adaptability, and ability to
manage the rapidly expanding volume and heterogeneity of
biological datasets, as well as the demands of emerging research
pipelines [29]. These challenges highlight the pressing need
for more dynamic and intelligent solutions. Al agents, with
their transformative potential, offer a promising path forward.
They enable capabilities such as real-time data generation,
autonomous experimental design, and high-dimensional data
analysis, addressing the limitations of traditional methods and
unlocking new possibilities in bioinformatics [21, 29, 30].

Thus, we define and envision agentic bioinformatics as a novel
and transformative paradigm within bioinformatics, wherein
intelligent Al agents are strategically integrated throughout the
entire research process to optimize, automate, and innovate
biological data analysis. Agentic bioinformatics goes beyond the
mere application of LLMs or isolated Al agents in bioinformatics
workflows. It emphasizes end-to-end integration of intelligent,
autonomous agents that can reason, plan, adapt, and collaborate
across the entire scientific process. These agents leverage
advanced machine learning, natural language processing, and
autonomous decision-making techniques to assume diverse,
dynamic roles across the bioinformatics pipeline, ranging from
data preprocessing and analysis to result interpretation and
hypothesis generation. These agents are designed not just to
execute predefined tasks, but to dynamically coordinate with
one another, make independent decisions under uncertainty,
and engage in long-horizon planning tailored to the complex-
ities of biological systems. By facilitating end-to-end automa-
tion and offering innovative solutions, agentic bioinformatics
enables more efficient and insightful scientific discovery in
biology.

Agentic bioinformatics represents a fundamental shift that
introduces a multi-agent, adaptive framework that aligns more
closely with the open-ended, exploratory nature of biological
research, where goals evolve and data contexts shift. Tasks that
once demanded extensive human expertise and time are now
streamlined, facilitating rapid hypothesis iteration and validation.
Furthermore, this paradigm promotes inclusivity by democra-
tizing access to advanced analytical tools, allowing researchers
with varying levels of computational expertise to leverage state-
of-the-art methods. In contrast to traditional LLM-based work-
flow automation, agentic bioinformatics entails a system-level
rethinking of how biological knowledge is generated, transform-
ing agents from tools into autonomous collaborators capable of
hypothesis generation, experimental design, and iterative refine-
ment. This systemic view enables enhanced scalability, inclusivity,
and accessibility, allowing researchers with diverse backgrounds
to leverage sophisticated methods through intelligent mediation.
By bridging disciplines, agentic bioinformatics could empower
collaborative efforts across the biological sciences, fostering inno-
vation and accelerating discovery.

Here, we comprehensively explore the concept and implica-
tions of agentic bioinformatics, with key terminology defined in
Table 1. We begin with an overview of existing operational frame-
works of Al agents in bioinformatics, distinguishing between
single-agent and multi-agent systems. Single-agent systems focus
on specialized, independent tasks, while multi-agent systems
involve collaboration and task distribution across agents. The
discussion emphasizes how these systems can tackle complex
biological problems more effectively than traditional methods.
Next, we present a forward-looking vision for a fully automated,
end-to-end laboratory powered by agentic bioinformatics. In such
a laboratory, intelligent agents manage every stage of the research
process, from hypothesis generation and experimental design to
data analysis, interpretation, and reporting. This vision integrates
wet-lab robotics, dry-lab computational agents, and real-time
decision-making systems, revolutionizing the pace and scope of
biological discovery. Finally, we address the opportunities and
challenges associated with agentic bioinformatics. Opportunities
include enhancing reproducibility, scalability, and innovation
in research, while challenges span ethical considerations, data
privacy, bias mitigation, the development of robust, interpretable
Al systems, among others. Our objective is to underscore the
transformative potential of Al agents in bioinformatics and
their critical role in advancing biological research. Agentic
bioinformatics is not merely an incremental advancement, it
signifies a paradigm shift that redefines the boundaries of what
is possible in the life sciences. By exploring the applications,
frameworks, and future directions of agentic bioinformatics, we
aim to inspire new research, foster interdisciplinary collaboration,
and provide a roadmap for realizing the full potential of this
emerging field.

Agentic bioinformatics

As illustrated in Fig. 1, intelligent agents in bioinformatics can
function in a variety of roles, each tailored to address specific
aspects of biological research and data analysis. These roles
include, but are not limited to Brainstorming Agents, which
assistin hypothesis generation and ideation; Experimental Design
Agents, which optimize research workflows and suggest experi-
mental parameters; Reasoning Agents, which draw inferences
and establish causal relationships from data; Wet-lab Al agents,
which control and automate laboratory equipment for physical
experiments; Dry-lab Al agents, which focus on computational
analysis and simulations; and Innovative Al agents, which explore
novel strategies and generate creative solutions to complex
problems. Together, these agents form a versatile and adaptive
toolkit for agentic bioinformatics, enabling researchers to address
diverse challenges across the biological research spectrum.

Agentsin bioinformatics operate under two primary paradigms:

single-agent systems and multi-agent systems. Each paradigm
serves distinct purposes and offers unique advantages depending
on the complexity and scope of the task. Single-agent systems
comprise a stand-alone Al agent that executes specific tasks inde-
pendently. They are designed for high specialization and focus,
excelling in tasks that require in-depth expertise or precision.
Such systems are particularly effective for compartmentalized
tasks that can be solved in isolation, offering simplicity and
efficiency in implementation. However, their stand-alone nature
limits their ability to address interconnected or multifaceted
problems.

In contrast, multi-agent systems consist of multiple intelligent
agents working collaboratively to tackle complex challenges.
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Table 1. Glossary of key terms in agentic bioinformatics

Term

Definition

Al agent

LLM

Agentic bioinformatics

Wet-lab Al agent

Dry-lab Al agent
Search agent
Literature review agent
Database agent
Innovative Al agent

Reasoning agent

An autonomous or semi-autonomous computational entity capable of perceiving its environment, processing information,
and taking actions to achieve specific goals. In the context of bioinformatics, Al agents operate across both wet-lab and
dry-lab settings.

A type of Al model trained on large corpora of text to perform natural language processing tasks. In this framework,
LLMs are used as foundational components for agents such as Literature Review Agents and Reasoning Agents, enabling
sophisticated language understanding and generation.

An interdisciplinary paradigm that integrates autonomous Al agents into the bioinformatics lifecycle, from hypothesis
generation and experimental execution to data analysis and interpretation, across both wet-lab and dry-lab environments.
An Al-driven system, often embodied in hardware or interfaced with physical lab equipment, that performs experimental
tasks such as sample preparation, PCR, microscopy, or animal testing. These agents support experimental throughput,
precision, and reproducibility.

A software-based Al entity that handles computational tasks, including data mining, statistical analysis, machine learning,
and hypothesis generation, using digital datasets such as genomic sequences or imaging data.

A type of dry-lab agent designed to retrieve relevant scientific information from structured and unstructured databases,
assisting in the knowledge-gathering phase of research.

An Al agent powered by LLMs that synthesizes insights from scientific literature to support experiment planning and
contextualization of results.

A dry-lab Al agent that manages and queries large-scale biological databases, enabling efficient access to structured
biological data.

An Al agent that can design forward-thinking Al applications, such as the design of novel algorithms and the development
of novel applications.

An advanced dry-lab Al agent that applies logic, inference, and probabilistic modeling to derive insights from complex

datasets and guide decision-making.

These systems are characterized by their ability to distribute
responsibilities, coordinate actions, and adapt dynamically
to evolving tasks. The adaptability and scalability of multi-
agent systems make them ideal for addressing the intricate
and dynamic nature of modern biocinformatics challenges.
They enable researchers to model complex systems, explore
multidimensional datasets, and solve problems that exceed the
capabilities of stand-alone agents.

By leveraging the strengths of both single-agent and multi-
agent systems, bioinformatics researchers can tailor their
approaches to the specific demands of their work, ensuring
optimal efficiency and innovation.

Single Al agent in bioinformatics

Single agent in bioinformatics is typically designed to handle
specific tasks such as data analysis or experiment control.
These agents have proven highly effective in managing well-
defined tasks, offering significant advantages in simplicity, cost-
effectiveness, and task specialization, as shown in Table 2. A
comparative analysis of their shared and distinct characteristics
is provided in Table 3.

Traditional bioinformatics data analysis requires multiple tools
and substantial programming expertise, which limits accessibility
to experimental researchers due to the steep learning curve.
BioMANIA [31] combines LLMs with Application Programming
Interfaces (APIs) from established Python libraries to streamline
high-throughput sequencing data analysis, addressing the
complexities and technical challenges inherent in these tasks.
By interpreting user instructions and automatically executing
bioinformatics workflows, BIoMANIA enables code-free biological
analyses, simplifying omics data exploration and accelerating
research. Despite these advantages, BloMANIA still faces limi-
tations with ambiguous instructions and heavily relies on high-
quality documentation. Its performance is limited by reliance

on the quality of third-party tools, encountering challenges
such as installation failures, undocumented dependencies, and
inconsistencies between API documentation and code. The
system also struggles with poorly designed APIs, characterized
by ambiguous names and excessive parameters, and unreliable
tutorials, while remaining susceptible to LLM hallucinations
during API prediction.

BIA [32] provides an interactive, automated solution for
single-cell RNA sequencing (scRNA-seq) analysis, leveraging
text-based interactions with LLMs to facilitate data extraction,
analysis, and report generation through dynamic user dialog.
The agent executes the entire single-cell analysis pipeline, from
data retrieval to invoking the necessary APIs for processing,
and autonomously plans and compiles conclusions. However,
the system’s performance in zero-shot dynamic workflows
reveals notable limitations, including frequent generation of
incomplete experimental designs that omit critical steps like
subcluster annotation because of the lack of professional knowl-
edge, inconsistent tool recommendations for identical queries
indicating underlying stability issues, and a persistent need for
manual intervention due to inadequate autonomous refinement
capabilities.

AutoBA [18] autonomously handles multi-omics data analysis
with remarkable ease of use. By requiring minimal user input,
such as the data path, description, and analysis goal, AutoBA
autonomously proposes an analysis plan, generates and executes
the necessary code, and performs the subsequent data analy-
sis. For example, in a task focused on identifying differentially
expressed genes, the user provides RNA-Seq data, along with its
description and analysis goal. AutoBA then automatically per-
forms the required preprocessing steps and generates an analy-
sis table as output. Its ability to adapt and self-design analysis
processes based on variations in input data and the novel auto-
mated code repairing module further enhances its flexibility and
versatility. While demonstrating robust performance across 40
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Figure 1. Conceptual framework for agentic bioinformatics. We present an interdisciplinary framework for agentic bioinformatics, which integrates
Al-driven agents into both dry-lab and wet-lab environments to revolutionize bioinformatics workflows. The framework is organized into functional
sections that highlight the key roles and interactions of autonomous Al agents across various stages of bioinformatics research. Brainstorming and
experiment design: the research process begins with brainstorming and experiment design, facilitated by specialized Al agents such as Search Agents
and Literature Review Agents. These agents retrieve, curate, and synthesize scientific knowledge from diverse databases, enabling researchers to
generate hypotheses efficiently. By providing contextualized insights from the latest research, these tools streamline the initial stages of scientific inquiry
and ensure that experiments are grounded in up-to-date evidence. Wet-lab Al Agents: wet-lab Al agents represent a class of physical or semi-physical
Al systems that interact directly with laboratory equipment to execute experimental procedures. Examples include polymerase chain reactions (PCR)
machines, microscopes, and animal modeling agents, which perform tasks such as PCR, high-resolution imaging, and in vivo modeling. These agents
enhance precision, reduce human error, and accelerate workflows, enabling researchers to focus on higher level decision-making and interpretation.
Dry-lab AI Agents: dry-lab Al agents, such as Database Agents and Reasoning Agents, are pivotal in managing, analyzing, and interpreting complex
datasets, including genomic, imaging, and multi-omics data. Advanced Al-driven tools like AutoBA and CellAgent further refine data interpretation,
extracting meaningful biological insights and uncovering patterns that may not be apparent through traditional methods. These agents bridge the
gap between raw data and actionable knowledge, enabling researchers to make data-driven decisions with confidence. Innovative Al agents: the
framework also emphasizes the role of forward-thinking Al applications, such as the Design of Novel Algorithms and the Development of Novel
Applications. These innovative agents exemplify the creative potential of Al in bicinformatics, enabling the exploration of uncharted territories and
the development of groundbreaking tools. By pushing the boundaries of what is possible, these agents facilitate discoveries and applications that were
previously unattainable. The seamless integration of wet-lab and dry-lab agents creates a collaborative ecosystem where Al accelerates the pace of
bioinformatics research. By synergizing embodied agents (wet-lab) and computational agents (dry-lab), the framework enables a continuous flow from
data generation to analysis and interpretation. This holistic approach addresses complex biological questions with unprecedented sophistication, paving
the way for transformative advancements in the field.

test cases, the system’s generalizability requires further valida-
tion given the vast diversity of tasks in classical bioinformatics
analysis.

BRAD ([33] is used for automation, performing tasks ranging
from gene enrichment and archival searches to automatically
generating code for biomarker identification pipelines. It is
organized into several specialized modules: the LAB NOTEBOOK
module for literature searches, the SOFTWARE module for soft-
ware generation and execution, and the DIGITAL LIBRARY module
for database and web searches. Bioinformatics tools like LM-ABC
[34] not only accelerate enzyme engineering workflows through
dynamic selection of specialized tools for tasks such as binding
site extraction, catalytic activity optimization, and molecular
dynamics simulations but also face implementation challenges
when generated code snippets or workflows encounter failures
stemming from incomplete or erroneous tool integration. By

combining Al-guided molecular design with robust interoper-
ability validation, these systems aim to balance automated
experimental optimization with technical reliability, enabling
researchers to navigate both biological complexity and com-
putational constraints in enzyme engineering pipelines. But
its effectiveness remains unquantified due to the absence of
benchmark comparisons that would establish its success rate,
accuracy, and other key performance indicators.

CRISPRGPT [35] streamlines gene-editing research by automat-
ing the design of CRISPR systems, guide RNAs, delivery methods,
and validation protocols, while its reliance on curated biologi-
cal databases introduces limitations in scenarios where species-
specific genomic data or gene annotations are incomplete. The
system’s ability to democratize experimental design for non-
experts is inherently tied to the coverage and accuracy of its
underlying knowledge resources, necessitating iterative updates
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Table 2. Single-agent systems for agentic bioinformatics. An asterisk (x) indicates a non-peer-reviewed paper

Reproducibility

Key feature

Model Task

Journal

Year

Method name

https://github.com/batmen-lab/

BioMANIA

bioRxivs GPT4 omics data analysis A chatbot generation pipeline with a user-friendly back-end
service for seamless interaction

2023

BioMANIA

https://github.com/

Automated multi-omics analysis with minimal user input while

providing detailed, step-by-step analysis plans

omics data analysis

Multiple LLMs

Advanced
Science

2023

AutoBA

JoshuaChou?2018/AutoBA

https://github.com/biagent-dev/bia
https://github.com/jpickard1/brad

Autonomous bioinformatic analysis through natural language

scRNA-seq data analysis
Various biological tasks

GPT4

bioRxiv#

2024

BioInformatics Agent (BIA)

BRAD

Enable tasks such as Retrieval-Augmented Generation, searches
across bioinformatics databases, and the execution of software

pipelines

Bioinformatics GPT4

2024

A computational tool that merges LLMs with biocatalysis-specific https://github.com/GT4SD/Im-

bioRxivx GPT4 enzyme engineering

2024

LM-ABC

assistant-for-biocatalysis

modules to streamline enzyme engineering

CRISPR genome engineering Assist nonexpert researchers in designing gene-editing

https://github.com/cong-lab/crispr-

gpt-pub

GPT4

bioRxiv#

2024

CRISPR-GPT

experiments and validates effectiveness in real-world use cases

design genetic perturbation Design new experiments, reasons about their outcomes, and

experiments

https://github.com/snap-stanford/

BioDiscoveryAgent

Claude 3.5
Sonnet

ICLR

2024

BioDiscoveryAgent

efficiently navigates the hypothesis space to reach desired

solutions

https://github.com/Genentech/

SpatialAgent

Process multimodal inputs, incorporate external databases, and
support human-in-the-loop interactions, enabling both fully

automated and collaborative discovery

conduct spatial genomics

bioRxivs GPT-40, Claude
3.5 Sonnet research

2025

SpatialAgent
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Consist of an environment of tools that emit observations and an https://github.com/ur-whitelab/

LLM that selects actions

Molecular dynamics

simulations

GPT-4o,

arXivs

2025

MDCrow

MDCrow

llama3-405b

to address gaps in underrepresented organisms or emerging gene
targets. This integration of automation with domain-specific con-
straints highlights both the transformative potential and context-
dependent challenges of Al-augmented workflows in genome
engineering. Safety and ethical concerns may arise when using
Al tools to guide genome editing, including risks such as unau-
thorized modification of human genomes and privacy breaches
involving users’ genomic data.

In spatial genomics research, autonomous agents hold sig-
nificant potential to drive innovation. SpatialAgent [36] exem-
plifies this promise by autonomously executing various spatial
biology tasks, from experimental design and multimodal data
analysis to hypothesis generation. Its adaptive reasoning engine
and dynamic tool integration enable it to work effectively across
diverse datasets, tissue types, and biological questions. Notably,
it preforms strongly in large-scale, spatially resolved cell and
tissue niche annotation. However, evaluation results suggest a
tendency to rely on common annotation patterns from its training
data rather than fully adapting to novel biological contexts. This
contrasts with domain experts, who often incorporate subtle,
context-specific cues during manual annotation.

However, while the simplicity and specialization of single
agents offer clear benefits, they also present distinct challenges.
Focusing on specific tasks can limit their ability to handle
complex, multifaceted problems that require cross-domain
knowledge or collaboration between multiple agents. Moreover,
the lack of synergy between isolated agents can lead to
inefficiencies, particularly when dealing with tasks that require
multiple steps or diverse methodologies.

Multi AI agents in bioinformatics

Multi-agent systems have emerged as indispensable tools for
tackling complex biological problems. These challenges include
data processing in genomics, drug discovery, and protein design.
By collaborating, different agents can effectively share tasks,
improve productivity, and adapt to new challenges. This section
will explore the collaboration models of multi-agent systems in
bioinformatics, focusing on collaborative task-solving, dynamic
task allocation, and continuous learning and adaptability
(Table 4). The comparative analysis of their shared and distinct
characteristics is provided in Table 5.

Multiple agents work together to solve complex tasks, often
by decomposing them into smaller sub-tasks and distributing
them among different agents. In the CellAgent [37] framework,
three agents, the Planner, Executor, and Evaluator, each take
on different roles to collaboratively analyze scRNA-seq data.
The Planner designs a comprehensive analysis workflow, the
Executor executes the designated tasks, and the Evaluator
ensures accuracy and biological relevance by conducting rigorous
assessments. BioMaster [38] employs a similar multi-agent design,
where specialized agents collaborate to plan, code, and debug,
enabling seamless execution of complex tasks such as Hi-C data
processing.

In complex bioinformatics tasks, new challenges and unfore-
seen issues may arise during the experiment. Multi-agent systems
are equipped with continuous learning and adaptability mecha-
nisms to optimize their strategies and behaviors over time. Cel-
lAgent also incorporates a self-iterative optimization mechanism
thatintegrates automated evaluation results and adjusts the exe-
cution strategy to address potential technical problems or exper-
imental anomalies. This self-improvement capability enables the
system to adapt to changes and maintain high efficiency in execu-
tion quickly. However, CellAgent also faces several challenges. Its

G20z 49q0)0 80 U0 3sanb Aq 9669928/50548AA/SG/9Z/2101HE/qIq/W0d dNO"dlWwapede//:sdiy Wo.y papeojumog


https://github.com/batmen-lab/BioMANIA
https://github.com/batmen-lab/BioMANIA
https://github.com/batmen-lab/BioMANIA
https://github.com/batmen-lab/BioMANIA
https://github.com/batmen-lab/BioMANIA
https://github.com/batmen-lab/BioMANIA
https://github.com/JoshuaChou2018/AutoBA
https://github.com/JoshuaChou2018/AutoBA
https://github.com/JoshuaChou2018/AutoBA
https://github.com/JoshuaChou2018/AutoBA
https://github.com/JoshuaChou2018/AutoBA
https://github.com/biagent-dev/bia
https://github.com/biagent-dev/bia
https://github.com/biagent-dev/bia
https://github.com/biagent-dev/bia
https://github.com/biagent-dev/bia
https://github.com/biagent-dev/bia
https://github.com/jpickard1/brad
https://github.com/jpickard1/brad
https://github.com/jpickard1/brad
https://github.com/jpickard1/brad
https://github.com/jpickard1/brad
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/GT4SD/lm-assistant-for-biocatalysis
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/cong-lab/crispr-gpt-pub
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/snap-stanford/BioDiscoveryAgent
https://github.com/Genentech/SpatialAgent
https://github.com/Genentech/SpatialAgent
https://github.com/Genentech/SpatialAgent
https://github.com/Genentech/SpatialAgent
https://github.com/Genentech/SpatialAgent
https://github.com/ur-whitelab/MDCrow
https://github.com/ur-whitelab/MDCrow
https://github.com/ur-whitelab/MDCrow
https://github.com/ur-whitelab/MDCrow
https://github.com/ur-whitelab/MDCrow
https://github.com/ur-whitelab/MDCrow

6 | Zhouetal.

Table 3. Feature comparison of single-agent systems for agentic bioinformatics. Automated: the agent completes a self-contained
task without human intervention. Human interaction: the agent follows user commands or instructions. Experiment design: the agent
is capable of independently designing experimental protocols relevant to its task. Data analysis: the agent performs statistical
computations, pattern recognition, and derives insights from raw datasets

Method name Automated

Human interaction

Experiment design Data analysis

BioMANIA

AutoBA

Biolnformatics Agent (BIA)
BRAD

LM-ABC

CRISPR-GPT
BioDiscoveryAgent
SpatialAgent

MDCrow
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memory systems can become excessively large, leading to perfor-
mance degradation in LLMs when handling overly long contexts.
CellAgent’s main limitation lies in its restricted self-evaluation
capability. While the GPT-4-based evaluation enables autonomous
optimization, it currently lacks flexibility for diverse analytical
objectives, requiring manual adjustment for specialized needs.

Multi-agent systems often need to dynamically allocate tasks
based on the complexity, priority, and real-time needs of the
tasks, enhancing system efficiency and ensuring optimal resource
utilization. In the Bio-Copilot framework [39], the task distribution
is based on the expertise of each agent and the current demands
of the system, with a coordination layer ensuring smooth execu-
tion and real-time feedback allowing adjustments to task allo-
cation for improved collaborative efficiency. Bio-Copilot’s multi-
agent architecture presents two key limitations. First, its compet-
itive learning mechanism, while effective for performance opti-
mization through parallel task execution and cross-evaluation,
incurs significant computational costs in resource allocation and
energy consumption. Second, the system’s prompt engineering
faces challenges in multi-agent coordination, where ambiguous
or context-poor instructions can compromise decision-making
accuracy.

Multi-agent systems have been successfully applied to a
wide range of bioinformatics tasks. For example, ProtAgent [40]
employs a multi-agent framework to streamline protein design
and analysis through role specialization while automating the
selection and deployment of external bioinformatics tools. Each
agent has a specific function: the Planner formulates strategies,
the Executor automatically identifies and applies appropriate
tools from external libraries for specific bioinformatics tasks,
and the Critic continuously assesses the effectiveness and
appropriateness of the tools being used. This system is engineered
to dynamically select and evaluate the most suitable tools based
on task requirements, ensuring that ProtAgent not only adapts
seamlessly across various protein design scenarios but also
enhances other functionalities integral to the protein engineering
process. ProAgent demonstrates constrained capabilities in multi-
objective protein design, as its current architecture primarily
employs data-driven end-to-end DL models. While effective
for individual characteristic prediction, the system struggles
to optimize competing design requirements simultaneously.
This limitation becomes particularly evident when addressing
complex biological specifications that demand concurrently
balancing multiple structural and functional parameters.

The Virtual Lab [41] functions as a collaborative platform
where Al and human expertise converge. Guided by a principal

investigator Al agent, the system coordinates a diverse team of Al
agents with expertise in fields like chemistry and computer sci-
ence, complemented by a human researcher who provides high-
level feedback. This collaborative setup is structured through a
series of team and individual meetings. Team meetings facilitate
collaborative discussions on overarching scientific goals, whereas
individual meetings focus on delegating and clarifying agent-
specific tasks. The Virtual Lab effectively addresses complex,
real-world scientific challenges, such as the development of
nanobody binders targeting new SARS-CoV-2 variants. In the
experiments, it successfully validated 92 engineered nanobodies,
with over 90% exhibiting expression and solubility. In particular,
two of these nanobodies showed unique binding properties
to recent JN.1 and KP.3 spike RBD variants, highlighting the
Virtual Lab’s innovative capacity to drive scientific breakthroughs.
But the Virtual Lab requires repeated refinements to achieve
optimal results, increasing time costs and facing challenges
with efficient resource utilization and ambiguous prompts.
The Virtual Lab’s effectiveness is constrained by inherent LLM
limitations, particularly in temporal knowledge currency and
decision-making precision. Its Al agents occasionally recommend
outdated tools (like AlphaFold-Multimer instead of AlphaFold3)
due to training data cutoffs, and require human intervention
to correct deprecated code implementations. Furthermore, the
system exhibits prompt sensitivity, when faced with binary
design choices (e.g. nanobody modification vs. de novo design),
agents often default to noncommittal responses unless explicitly
constrained. These constraints currently necessitate significant
human work to maintain scientific rigor.

Challenges of agentic bioinformatics

Despite its transformative potential, agentic bioinformatics faces
several critical challenges that must be addressed to ensure its
effective deployment in biological research. These challenges
span technical, ethical, and collaborative aspects, each of which
requires targeted solutions. Below, we outline the key challenges
specific to agentic bioinformatics.

Integration and standardization

Agentic bioinformatics systems rely on a diverse ecosystem of Al
agents, bioinformatics tools, and laboratory automation devices.
However, the lack of standardized protocols for communication
between Al-driven components impedes seamless interoperabil-
ity. Existing bioinformatics workflows use heterogeneous data
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Table 4. Multi-agent systems for agentic bioinformatics. An asterisk () indicates a non-peer-reviewed paper

Reproducibility

Key feature

Task

Model

Journal

Year

Method name

http://cell.agent4

science.cn

A hierarchical decision-making mechanism to coordinate these biological
experts, effectively driving the planning and step-by-step execution of

complex data analysis tasks

GPT4, GPT-4V scRNA-seq data analysis

bioRxiv#

2024

CellAgent

https://github.com/zou-
group/virtual-lab

An LLM principal investigator agent guiding a team of LLM agents with
different scientific backgrounds, with a human researcher providing

high-level feedback

Design nanobody binders to recent

variants of SARS-CoV-2

GPT4

bioRxivs

2024

The Virtual Lab

https://github.com/

Bio-Copilot decomposes a bioinformatics task into modular, hierarchical
steps, configures agent groups, and specifies roles according to step

Large-scale omics studies

Multiple LLMs

bioRxiv#

2024

Bio-Copilot

lyyang01/Bio-Copilot

characteristics, while formulating rules for task allocation and scheduling.
Researchers collaborate with agent groups to generate explicit execution
plans, and execution agent groups gather resources and carry out plans

https://github.com/

A platform for de novo protein design based on LLMs, where multiple Al
agents with distinct capabilities collaboratively address complex tasks

Protein design and analysis
within a dynamic environment

Digital Discovery = GPT-4

2024

ProtAgents

lamm-mit/ProtAgents

https://github.com/ai4
nucleome/BioMaster

Integration of a tailored memory mechanism and specialized agents to

optimize input/output handling and management in complex

bioinformatics workflows

Various bioinformatics tasks

GPT-4

bioRXivs

2025

BioMaster
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close-sourced

Multi-agent system built on small language models, fine-tuned on

Assist users in designing complex

bioinformatics pipelines

Phi-3

arXivs

2025

BioAgents

bioinformatics data, and enhanced with retrieval augmented generation

formats, software environments, and computational frameworks,
making it difficult to integrate Al agents across different plat-
forms. Standardization of APIs, data exchange formats, and agent
communication protocols is essential to enable collaborative Al
agents that operate across multiple bioinformatics tasks [42].

High-dimensional biological data and
multimodal integration

Biological data are inherently high-dimensional, spanning
genomics, transcriptomics, proteomics, metabolomics, and
imaging modalities [43]. Agentic bioinformatics systems must
efficiently process and integrate multi-modal datasets, each
with different statistical distributions and noise characteristics.
Traditional bioinformatics pipelines often rely on domain-specific
preprocessing steps that may not generalize well to Al-driven
workflows. Al agents must be equipped with adaptive data
preprocessing, feature selection, and dimensionality reduction
techniques to extract meaningful patterns from complex
biological datasets.

Out-of-distribution generalization and anomaly
detection

A significant challenge for Al-driven bioinformatics is general-
ization to unseen data distributions, particularly when analyz-
ing datasets from different species, cell types, or experimental
conditions [44]. Al agents trained on specific datasets may fail
to generalize when applied to new biological contexts, leading
to unreliable predictions. Out-of-distribution generalization and
anomaly detection methods must be incorporated into agentic
bioinformatics workflows to ensure robustness [45, 46]. This is
particularly critical in clinical applications where Al-driven diag-
nostics and personalized medicine decisions must be validated
across diverse patient populations [47].

Hallucinations in Al-driven bioinformatics

Al agents, particularly LLMs and generative Al systems, may
produce biologically implausible results or hallucinations when
making predictions or generating hypotheses. In bioinformatics,
hallucinations could manifest as incorrect sequence alignments,
erroneous functional annotations, or false protein-ligand interac-
tions. Unlike hallucinations in natural language processing, which
are often a minor inconvenience, incorrect Al-driven bioinformat-
ics predictions can mislead experimental designs and result in
wasted resources. Implementing confidence scoring mechanisms,
uncertainty quantification, and expert validation is crucial to
mitigating Al hallucinations in bioinformatics [18]. Recent stud-
ies have demonstrated that medical LLMs can produce clini-
cally unsupported content with high linguistic fluency [48, 49].
In domains like protein design, such hallucinations, e.g. inac-
curate structural or binding predictions, could lead to costly
downstream failures in wet-lab experiments. To mitigate these
risks, methods such as retrieval-augmented generation [50] and
multi-agent cross-validation [51] have been proposed, introducing
external factual grounding and structured reasoning workflows
to enhance reliability.

Bias, inclusivity, and security

Bioinformatics datasets are often biased due to limited sample
diversity in publicly available repositories. Al agents trained on
biased datasets may produce unfair or misleading conclusions,
particularly in applications such as disease biomarker discovery
and drug response predictions. Bias mitigation strategies, such as
adversarial debiasing and fairness-aware learning, are necessary
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Table 5. Feature comparison of multi-agent systems for agentic bioinformatics. Specialized roles: agents are assigned distinct,
complementary roles within the system. Self-optimization: the system utilizes performance feedback to enable self-tuning and
adaptive optimization. Human-guided collaboration: the system incorporates scientific expertise through structured mechanisms for

human-agent interaction

Method name Specialized roles

Self-optimization Human-guided collaboration

CellAgent

The Virtual Lab
Bio-Copilot
ProtAgents
BioMaster
BioAgents

EEENENENENEN

ANENENENENEN
WX X AR X

to ensure that Al-driven insights are equitable across diverse
populations [52]. In particular, ancestry-related biases in genomic
databases have been widely reported to reduce predictive perfor-
mance for underrepresented populations [53]. In multi-agent set-
tings, fairness-aware coordination strategies [54] can help ensure
equitable outcomes across subgroup-specific agents. Additionally,
Al-driven bioinformatics workflows must address security con-
cerns, including adversarial attacks on biological datasets and
unauthorized data access. This is especially important in feder-
ated or cloud-deployed agentic systems, where data poisoning
or backdoor attacks could compromise downstream scientific
outcomes [55].

Data privacy and limited annotations

Many bioinformatics applications involve sensitive genomic and
clinical data, raising concerns about data privacy and regulatory
compliance. Ensuring that Al agents comply with data protection
regulations (e.g. GDPR, HIPAA) is crucial for their adoption in
biomedical research. Federated learning and privacy-preserving
Al techniques, such as differential privacy and homomorphic
encryption, can help mitigate data privacy risks [56]. Recent
advancements demonstrate secure multiparty computation
frameworks for genome-wide association studies that preserve
individual privacy without sacrificing utility [57]. Additionally,
limited annotations in biological datasets pose challenges for
supervised learning models, necessitating the development
of weakly supervised, self-supervised, and semi-supervised
learning approaches. Agentic frameworks can benefit from self-
supervised pretraining on large unlabeled datasets followed
by few-shot fine-tuning for specialized downstream tasks
[58].

Interpretability and explainability in Al-driven
bioinformatics

Interpretability remains a major bottleneck in deploying Al-driven
bicinformatics models in real-world applications. Many DL-based
bioinformatics models function as black boxes, making it diffi-
cult for researchers to understand the reasoning behind their
predictions. Al agents used in bioinformatics must incorporate
explainability techniques to improve model transparency [59]. For
instance, model attribution tools such as SHAP and Integrated
Gradients are increasingly used to explain omics-based classifiers
[60, 61]. In multi-agent settings, it is equally important to provide
step-wise provenance logs that allow users to trace decisions
across the agent graph. Explainable Al (XAI) is particularly crucial
for applications like drug discovery, where the rationale behind
molecule-target interactions must be validated before proceeding
to experimental validation.

Ethical considerations

The integration of Al agents in bioinformatics raises several ethi-
cal concerns. Al-generated biological hypotheses and experimen-
tal designs must be evaluated to ensure that they do not lead
to unintended consequences, such as unethical genetic modifi-
cations or dual-use research applications. Ethical Al frameworks
should be developed to guide the responsible use of Al agents
in bioinformatics research, ensuring alignment with bioethical
principles [62]. For example, recent work has demonstrated how
generative models can be repurposed to design toxic molecules
in silico [63], raising the urgency of adding explicit safeguards.
Integrating kill switches, access constraints, and auditability are
necessary for safe agent deployment [21].

Human-AI collaboration in bioinformatics

Al-driven bioinformatics should augment, rather than replace
human expertise. However, achieving effective human-AI col-
laboration remains a challenge due to the steep learning curve
associated with Al-driven tools. Researchers must be trained to
interact with Al agents, interpret Al-driven insights, and vali-
date computational predictions experimentally. Additionally, Al
systems must be designed to communicate their findings in a
manner that is comprehensible to domain experts with varying
levels of computational expertise [64]. Interactive agents that
support natural language explanation, backtracking, and what-if
analysis have shown promise in reducing cognitive barriers and
improving user trust [65]. In particular, explainable dialog agents
that allow clinicians or biologists to question Al decisions are
gaining attention in biomedical domains [21].

Methods
Selection of agentic systems

As the notion of agentic systems in bioinformatics is still
nascent but rapidly advancing, the body of literature explicitly
using this terminology remains limited. Therefore, we adopted
an exploratory and integrative survey methodology aimed at
capturing the current landscape of relevant technologies.

We performed a targeted search of relevant literature from
January 2020 to March 2025 using major academic and preprint
databases, including PubMed, arXiv, bioRxiv, Google Scholar, and
IEEE Xplore. Our search employed combinations of the following
keywords: “Al agent,” “autonomous system,” “LLM in biology,”
“wet-lab automation,” “robot scientist,” “bioinformatics pipeline,”
“multi-agent system,” and “agent-based Al in science”.

We included studies, tools, and platforms that met the follow-
ing criteria:

» o«
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1. Explicit or implicit use of autonomous or semi-autonomous
Al systems that support tasks across the bioinformatics
workflow.

2. Relevance to biological data acquisition, analysis, or inter-
pretation in either wet-lab or dry-lab contexts.

3. Availability through peer-reviewed publications, preprints, or
reputable open-source platforms with community recogni-
tion.

4. Systems that exhibit agentic characteristics, such as goal-
directed behavior, contextual reasoning, perception-action
loops, or integration with physical or digital environments.

Discussion

The prospect of an end-to-end automated biological discovery
system powered by agentic bioinformatics represents a revolu-
tionary shift in how biological research is conducted. In this
forward-thinking model, intelligent Al agents are fully integrated
throughout the research pipeline, autonomously managing every
phase, from data generation and experimental design to execu-
tion, data acquisition, and analysis. This transformation has the
potential to significantly reduce the time and resources needed
for scientific discovery while increasing precision, reproducibility,
and scalability. However, realizing this vision requires address-
ing the diversity of biological research, the iterative nature of
experimental design, and the technical and ethical challenges of
integrating Al into laboratory workflows.

The Al-driven laboratory: a vision for automation

In the envisioned Al-driven laboratory, intelligent agents oper-
ate across all stages of the experimental workflow([66, 67]. They
can autonomously generate synthetic biological data to simu-
late complex systems, which is particularly valuable when real-
world data are scarce or difficult to obtain. Al agents can also
design experiments by selecting optimal methodologies, deter-
mining experimental parameters, and refining protocols based on
prior results [68, 69]. During the execution phase, Al-controlled
robotic systems automate tasks such as liquid handling, sample
preparation, and real-time imaging [70]. This level of automation
ensures precision and reduces human error. It also enables high-
throughput experimentation crucial for large-scale studies. Once
experiments are conducted, Al agents immediately process and
analyze the resulting data, using machine learning algorithms
to identify patterns, uncover novel insights, and suggest new
avenues for exploration [29]. This seamless integration reduces
the time between data collection and actionable results, enabling
faster hypothesis testing and refinement.

Types of experiments amenable to automation

While the potential of Al-driven laboratories is immense, it is
important to recognize that biological research is highly diverse,
and not all experiments are equally suited to automation. High-
throughput approaches, such as multi-omics profiling, are par-
ticularly well-suited for automation due to their parallelizable
nature and reliance on large-scale data generation [71]. These
experiments benefit significantly from Al agents, which can effi-
ciently manage repetitive tasks, process vast datasets, and iden-
tify patterns that human researchers might miss [29, 72]. In
contrast, low-throughput experiments often require customized
skills and designs, making them less amenable to full automation.
For example, experiments involving complex organismal behavior

or rare biological phenomena may still rely heavily on human
expertise and manual intervention.

Moreover, the iterative nature of biological research poses
a unique challenge for automation. Experimental design often
depends on the results of prior experiments, requiring a feedback
loop where hypotheses are refined and protocols are adjusted
based onnew data. Al agents can play a critical role in this process
by rapidly analyzing results, suggesting modifications, and
optimizing experimental parameters in real-time. However, this
requires robust integration between AI systems and laboratory
equipment, as well as the ability to adapt to unexpected outcomes
[73].

Multi-agent systems: collaboration and
scalability

A key development in this paradigm is the use of multi-agent
systems, where multiple Al agents collaborate to accomplish
complex tasks. In such systems, each agent focuses on a specific
aspect of the research process, such as data collection, analysis,
or resource management. For instance, one agent may prepro-
cess data from biological samples, while another runs machine
learning algorithms to identify key biomarkers, and yet another
optimizes experimental protocols in real-time. This collabora-
tive approach allows for the efficient execution of multifaceted
research tasks that would be impossible for a single agent to
accomplish in isolation.

Multi-agent systems also enhance the adaptability of the
research process. As new challenges or research questions arise,
agents can autonomously adjust their behavior or cooperate to
address emerging issues without significant human intervention.
This adaptability is particularly valuable in dynamic research
environments, where experimental conditions and objectives may
evolve over time.

Technical challenges and solutions

Despite the promise of Al-driven laboratories, several technical
challenges must be addressed to realize their full potential. One
major challenge is the integration and standardization of diverse
Al systems [74]. Effective collaboration between agents requires
a unified platform that can accommodate different types of Al,
such as machine learning, reinforcement learning, and natural
language processing. Standardized protocols for data exchange
and communication between agents are essential to ensure seam-
less interoperability [75].

Another challenge is the integration of Al agents with physical
laboratory equipment. Ensuring that Al systems can control and
interact with devices such as robotic arms, sensors, and micro-
scopes requires robust hardware-software interfaces and real-
time feedback mechanisms. Advances in the Internet of Things
(IoT) and edge computing may provide solutions to these chal-
lenges, enabling seamless communication between Al agents and
laboratory devices.

Ethical and regulatory considerations

The adoption of Al-driven laboratories also raises important eth-
ical and regulatory questions. Issues such as data privacy, the
interpretability of experimental results, and the transparency of
Al decision-making must be carefully addressed. For example,
Al-generated insights must be explainable and reproducible to
maintain scientific rigor and public trust. Additionally, the use of
Al in sensitive areas such as personalized medicine and genetic
engineering requires robust ethical guidelines to prevent misuse
and ensure equitable access to technological advancements.
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Implications for scientific discovery

The implications of fully automated, multi-agent research
environments are profound. By automating routine and labor-
intensive tasks, researchers can focus on higher level scientific
thinking and hypothesis generation. The speed and efficiency
of Al-driven experiments would enable the exploration of
previously infeasible research questions, accelerating the pace
of scientific discovery. Moreover, the scalability of automated
systems means that the volume and complexity of experiments
that can be conducted would increase exponentially, potentially
revolutionizing fields such as genomics, drug discovery, and
personalized medicine.

This new paradigm also has the potential to democratize
access to cutting-edge experimental capabilities. Researchers
with limited expertise in computational methods could harness
the power of Al for their work, broadening participation in
scientific research and accelerating progress across the biological
sciences. By combining the strengths of Al-driven automation
with human creativity and insight, the future of biological
discovery holds unprecedented promise.

Conclusion

Agentic bioinformatics has emerged as a groundbreaking
paradigm that integrates AI agents into the bioinformatics
pipeline, ushering in a new era of precision, efficiency, and
innovation in biological research. Al agents are now playing a key
role in various aspects of bioinformatics, from data generation
and experimental design to data analysis and interpretation.
Their ability to autonomously perform complex tasks has the
potential to drastically reduce human error, accelerate discovery,
and enable researchers to address questions that were previously
out of reach. This development marks a significant shift in
how biological research is conducted, with AI agents now
complementing, and in some cases replacing, traditional human-
centered workflows.

Despite the remarkable advancements, there remain signifi-
cant challenges to overcome in the field of agentic bioinformatics.
One of the primary hurdles is the continued improvement of
Al agents’ intelligence and capabilities. Current systems often
face limitations, such as biases in algorithms, poor-quality data,
and challenges in generalizing across diverse biological contexts.
Enhancing the robustness, adaptability, and accuracy of these Al
systems will be critical in ensuring their reliability and scalability
for a wide range of biological research applications. Additionally,
as Al agents become more integral to bioinformatics, there is an
increasing need for more advanced integration techniques that
allow these systems to work seamlessly across various domains,
from machine learning and data analysis to laboratory automa-
tion.

The future of agentic bioinformatics also lies in fostering cross-
disciplinary collaboration. The convergence of Al, computational
biology, and experimental sciences is essential for advancing the
field. Realizing the full potential of Al-driven research requires
close collaboration among bioinformaticians, data scientists,
experimental biologists, and Al experts. This collaboration must
ensure Al systems incorporate biological understanding while
experimental workflows optimize Al agents’ utilization. This
collaborative effort will be pivotal in overcoming the current
technological limitations and will lead to the development of
more intuitive, flexible, and powerful systems.

Looking ahead, we can anticipate that Al agents will become
increasingly ubiquitous in bioinformatics over the next few years.

As the technology continues to evolve, the role of Al agents
in the field will expand from supporting individual tasks to
orchestrating entire research workflows, leading to a future where
end-to-end automated biological discovery is a reality. This evo-
lution will likely revolutionize not only research but also clinical
applications, particularly in areas like personalized medicine,
drug discovery, and disease modeling. By automating complex
processes and offering more precise, data-driven insights, Al
agents will empower researchers to make faster and more
informed decisions, ultimately leading to breakthroughs thathave
profound implications for human health and our understanding
of biology.

In conclusion, agentic bioinformatics holds great promise, but
achieving its full potential will require overcoming technical, eth-
ical, and collaborative challenges. As Al technologies advance and
integrate further into biological research, the field will undoubt-
edly experience a transformation. Al agents will play a criti-
cal role in the next wave of scientific discovery and clinical
innovation.

Key Points

e Agentic bioinformatics is an emerging paradigm that
leverages Al agents powered by large language models
(LLMs) to autonomously analyze, interpret, and explore
complex biological data.

e Agentic bioinformatics represents a shift from tradi-
tional, static bioinformatics workflows toward dynamic,
adaptive, and scalable systems capable of self-directed
biological discovery.

e Agentic bioinformatics has promising applications in
personalized medicine, drug discovery, and synthetic
biology, where autonomous decision-making can accel-
erate innovation.

¢ This review outlines key technical, ethical, and scalabil-
ity challenges, emphasizing the need for robust infras-
tructure and responsible deployment of agentic systems.
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