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An AI Agent for Fully Automated Multi-Omic Analyses

Juexiao Zhou, Bin Zhang, Guowei Li, Xiuying Chen, Haoyang Li, Xiaopeng Xu,
Siyuan Chen, Wenjia He, Chencheng Xu, Liwei Liu,* and Xin Gao*

With the fast-growing and evolving omics data, the demand for streamlined
and adaptable tools to handle bioinformatics analysis continues to grow. In
response to this need, Automated Bioinformatics Analysis (AutoBA) is
introduced, an autonomous AI agent designed explicitly for fully automated
multi-omic analyses based on large language models (LLMs). AutoBA
simplifies the analytical process by requiring minimal user input while
delivering detailed step-by-step plans for various bioinformatics tasks.
AutoBA’s unique capacity to self-design analysis processes based on input
data variations further underscores its versatility. Compared with online
bioinformatic services, AutoBA offers multiple LLM backends, with options for
both online and local usage, prioritizing data security and user privacy. In
comparison to ChatGPT and open-source LLMs, an automated code repair
(ACR) mechanism in AutoBA is designed to improve its stability in automated
end-to-end bioinformatics analysis tasks. Moreover, different from the
predefined pipeline, AutoBA has adaptability in sync with emerging
bioinformatics tools. Overall, AutoBA represents an advanced and convenient
tool, offering robustness and adaptability for conventional multi-omic
analyses.
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1. Introduction

Bioinformatics is an interdisciplinary
field that encompasses computational,
statistical, and biological approaches to
analyze, understand and interpret com-
plex biological data.[1–3] With the rapid
growth of gigabyte-sized biological data
generated from various high-throughput
technologies, bioinformatics has become
an essential tool for researchers to make
sense of these massive datasets and extract
meaningful biological insights. The appli-
cations of bioinformatics typically cover
diverse fields such as genome analysis,[4,5]

structural bioinformatics,[6–7] systems
biology,[8] data and text mining,[9–10]

phylogenetics,[11–12] and population
analysis,[13] which has further enabled
significant advances in personalized
medicine[14] and drug discovery.[15]

In broad terms, bioinformatics could
be categorized into two primary do-
mains: the development of innovative

algorithms to address various biological challenges,[16–20] and
the application of established tools to analyze extensive bi-
ological datasets,[21,22] especially high-throughput sequencing
data. Developing new bioinformatics software requires a sub-
stantial grasp of biology and programming expertise. Along-
side the development of novel computational methods, one
of the most prevalent applications of bioinformatics is the
investigation of biological data using the existing tools and
pipelines,[23,24] which typically involves a sequential, flow-based
analysis of omics data, encompassing variety types of datasets
like whole genome sequencing (WGS),[25] whole exome sequenc-
ing (WES), RNA sequencing (RNA-seq),[26] single-cell RNA-seq
(scRNA-Seq),[27] transposase-accessible chromatin with sequenc-
ing (ATAC-Seq),[28] ChIP-seq,[29] and spatial transcriptomics.[30]

For example, the conventional analytical framework for bulk
RNA-seq involves a meticulously structured sequence of com-
putational steps.[31] This intricate pipeline reveals its com-
plexity through a series of carefully orchestrated stages. It
begins with quality control,[32] progresses to tasks such as
adapter trimming[33] and the removal of low-quality reads, and
then moves on to critical steps like genome or transcriptome
alignment.[34] Furthermore, it extends to some advanced tasks,
including the identification of splice junctions,[35] quantifica-
tion through read counting,[36] and the rigorous examination
of differential gene expression.[37] Moreover, the pipeline delves
into the intricate domain of alternative splicing[38] and isoform
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analysis.[39] This progressive journey ultimately ends in down-
stream tasks like the exploration of functional enrichment,[40]

providing a comprehensive range of analytical pursuits. Com-
pared to bulk RNA-seq, ChIP-seq involves distinct down-
stream tasks, such as peak calling,[41] motif discovery,[42] peak
annotation[43] and so on. In summary, the analysis of different
types of omics data requires professional skills and a comprehen-
sive comprehension of the corresponding field, particularly for
customized data analysis. Moreover, the methods and pipelines
might vary across different bioinformaticians and they even may
evolve with the development of more advanced algorithms.

Meanwhile, online semi-automatic bioinformatics analysis
platforms are currently in vogue,[44] such as iDEP,[45] ICARUS[46]

and STellaris.[47] However, they often necessitate the uploading of
either raw data or pre-processed statistics by users, which could
potentially give rise to additional privacy concerns and data leak-
age risks.[48]

In the context described above, the bioinformatics commu-
nity grapples with essential concerns regarding the standardiza-
tion, portability, and reproducibility of analysis pipelines.[49–51]

Moreover, achieving proficiency in utilizing these pipelines for
data analysis demands additional training, posing challenges for
many wet lab researchers due to its potential complexity and
time-consuming nature. Even dry-lab researchers may find the
repetitive process of running and debugging these pipelines to be
quite tedious.[52] Meanwhile, bioinformatics data analysis train-
ing incurs substantial costs. The elevated expenses associated
with training in bioinformatics data analysis could be attributed
to the highly specialized nature of the field, the need for multi-
modal data analysis, the evolution of technologies, restricted
computing resources, the expense of training materials and tools,
as well as the operational costs of training institutions. These
factors collectively contribute to the high cost of bioinformatics
training.[53] Consequently, there is a growing anticipation within
the community for the development of a more user-friendly, low-
code, multi-functional, automated, and natural language-driven
intelligent tool tailored for end-to-end bioinformatics analysis.
Such a tool has the potential to generate significant excitement
and benefit researchers across the field.

Over the past few months, the rapid advancement of Large
Language Models (LLMs)[54] has raised substantial expectations
for the enhancement of scientific research, particularly in the
field of biology.[55–57] These advancements hold promise for
applications such as disease diagnosis,[58–61] drug discovery,[62]

and all. In the realm of bioinformatics, LLMs, such as ChatGPT,
also demonstrate immense potential in tasks related to bioinfor-
matics education[63] and code generation.[64] While researchers
have found ChatGPT to be a valuable tool in facilitating bioin-
formatics research, such as data analysis, there remains a strong
requirement for human intervention in the execution process.
ChatGPT shows sensitivity to the nuances of user queries,
resulting in diverse responses based on the prompts, which is
the reason why prompt engineering is getting huge attention.[65]

Given the specialized nature of bioinformatics tools, ChatGPT is
also susceptible to potential issues, such as misinterpreting pa-
rameters, errors in software utilization, and other bugs that may
arise during code generation. Users may encounter the necessity
for ongoing engagement with ChatGPT, involving a continuous
cycle of inquiry, code generation, execution, and debugging to en-

sure desired performance. AutoGPT,[66] as a recently developed,
advanced, and experimental open-source autonomous AI agent,
has the capacity to string together LLM-generated “thoughts”
to autonomously achieve user-defined objectives. Nevertheless,
given the intricate and specialized nature of bioinformatics tasks,
such as specialized software, the direct application of AutoGPT
in this field still presents significant challenges. Notably, it
faces difficulties in effectively managing the intricate software
requirements of bioinformatics, encompassing tasks such as
installation, software calls, and parameter settings.

In this study, we introduce Automated Bioinformatics Analysis
(AutoBA), an autonomous AI agent tailored for comprehensive
and conventional multi-omic analyses, as it can be applied to the
analysis of different omics datasets. AutoBA simplifies user inter-
actions to just three inputs: data path, data description, and the
final objective. This tool autonomously proposes analysis plans,
generates code, executes codes, and conducts subsequent data
analysis by using our well-designed prompts. We implemented
AutoBA as open-source software that offers multiple LLM back-
ends, with options for both online and local usage, prioritizing
data security and user privacy (Figure 1). To show the reliability of
AutoBA, we tested it in a large number of real-world multi-omic
analysis scenarios (Figure 2). AutoBA, serving as an AI agent tai-
lored for bioinformatics data analysis, could address the surging
demand for streamlined multi-omics data analysis, mitigate the
financial challenges associated with bioinformatics training, and
cater to diverse customization requirements. Compared with on-
line bioinformatic services, AutoBA offers multiple LLM back-
ends, with options for both online and local usage, prioritizing
data security and user privacy (Table 1). In comparison to Chat-
GPT and open-source LLMs, we have designed an automated
code repair mechanism in AutoBA to improve its stability in au-
tomated end-to-end bioinformatics analysis tasks. Moreover, dif-
ferent from the predefined pipeline, AutoBA has adaptability in
sync with emerging bioinformatics tools. In summary, AutoBA
is the first agent of this kind and represents a significant leap in
the application of LLMs and automated AI agents within the do-
main of bioinformatics, highlighting their potential to accelerate
future research in this field.

2. Experimental Section

2.1. The Overall Framework Design of AutoBA

AutoBA is the first autonomous AI agent tailor-made for con-
ventional multi-omic analyses. As illustrated in Figure 1, con-
ventional bioinformatics typically entails the use of pipelines to
analyze diverse data types such as WGS, WES, RNA-seq, single-
cell RNA-seq, ChIP-seq, ATAC-seq, spatial transcriptomics, and
more, all requiring the utilization of various tools. Users are tradi-
tionally tasked with selecting the appropriate tools based on their
specific analysis needs. In practice, this process involves config-
uring the environment, installing software, writing code, and de-
bugging, which are time-consuming and labor-intensive.

With the advent of AutoBA, this labor-intensive process
is revolutionized. Users are relieved from the burden of
dealing with multiple software packages and need only pro-
vide three key inputs in YAML format: the data path (e.g.,
/data/SRR1374921.fasta.gz), data description (e.g., single-end

Adv. Sci. 2024, 2407094 2407094 (2 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202407094 by Juexiao Z

hou - K
ing A

bdullah U
niv. O

f Science &
 T

ech K
aust , W

iley O
nline L

ibrary on [04/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 1. Design of AutoBA. AutoBA stands as the first autonomous AI agent meticulously crafted for conventional multi-omic analyses. Remarkably
user-friendly, AutoBA simplifies the analytical process by requiring minimal user input, including data path, data description, and the final objective,
while delivering detailed step-by-step plans for various bioinformatics tasks. With these inputs, it autonomously proposes analysis plans, generates code,
executes codes, and conducts subsequent data analysis by using our well-designed prompts. AutoBA was implemented as open-source software that
offers multiple LLM backends, with options for both online and local deployment, prioritizing data security and user privacy and offering a streamlined
and efficient solution for bioinformatics tasks. Step 1 and Step 3 require human intervention, while Step 2 requires no human intervention. Due to the
numerous and complex nature of these specific items, they are represented with ellipsis to indicate the vast and detailed possibilities that cannot be
fully enumerated in this limited space.

reads in condition A), and the ultimate analysis goal (e.g.,
identify differentially expressed genes). AutoBA takes over by
autonomously analyzing the data, generating comprehensive
step-by-step plans, composing code for each step, executing the
generated code, and conducting in-depth analysis. Depending
on the complexity and difficulty of the tasks, users can expect
AutoBA to complete the tasks within a matter of minutes to a few
hours, all without the need for additional human intervention
(Table 2 and Figure 2).

2.2. Prompt Engineering of AutoBA

To initiate AutoBA, users provide three essential inputs: the data
path, data description, and the previously mentioned analysis ob-

jective. AutoBA comprises three distinct phases: the planning
phase, the code generation phase, and the execution phase as
shown in Step 2 of Figure 1. During the planning phase, Au-
toBA meticulously outlines a comprehensive step-by-step anal-
ysis plan. This plan includes details such as the software name
and version to be used at each step, along with guided actions
and specific sub-tasks for each stage. Subsequently, in the code
generation phase, AutoBA systematically follows the plan and
generates codes for sub-tasks, which entails procedures like con-
figuring the environment, installing the necessary software, and
writing code. Then, in the execution phase, AutoBA executes the
generated code. In light of this workflow, AutoBA incorporates
two distinct prompts: one tailored for the planning phase and
the other for the code generation phase. Intensive experiments
have shown that these two sets of prompts are essential for the

Adv. Sci. 2024, 2407094 2407094 (3 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202407094 by Juexiao Z

hou - K
ing A

bdullah U
niv. O

f Science &
 T

ech K
aust , W

iley O
nline L

ibrary on [04/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 2. Method design and evaluation of AutoBA. a) AutoBA workflow design and technical details. b) Pie chart indicates the number of all cases used
for validating AutoBA.

proper functioning of AutoBA in automated bioinformatics anal-
ysis tasks.

The prompts for both the planning phase and the code gen-
eration phase are displayed in the Supporting Information. In
both prompt designs, the term blacklist pertains to the user’s per-
sonalized list of prohibited software. The current default black-
list contains several tools that frequently caused errors during
the testing processes. Meanwhile, data list encompasses the in-
puts necessary for AutoBA, encompassing data paths and data
descriptions. The term current goal serves as the final objective

during the planning phase and as the sub-goal in the execution
phase, while history summary encapsulates AutoBA’s memory of
previous actions and information.

2.3. Memory Management of AutoBA

A memory mechanism is incorporated within AutoBA to enable
it to generate code more effectively by drawing from past actions,
thus avoiding unnecessary repetition of certain steps. AutoBA

Table 1. Qualitative comparison of AutoBA against other methods. All methods were conceptually assessed with seven metrics, including user-
friendliness, time efficiency, diminished human intervention (degree of automation), ease of redevelopment, generality, robustness, and privacy con-
siderations. * denotes a category of methods rather than a specific one. For instance, Online Webserver refers to platforms like iDEP and ICARUS, and
Open Source LLMs includes models such as Llama2 and CodeLlama.

Methods Easy to Master Save Time Reduced Human
Intervention

Redevelopment Generalizability Robustness Privacy

AutoBA ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Conventional
Bioinformatics Tools

✓ ✓ – ✓✓ ✓ ✓✓ ✓✓✓

Online Webserver∗ ✓✓ ✓✓ – – ✓ ✓ –

AutoGPT ✓✓✓ ✓✓ ✓✓ ✓✓ ✓✓✓ ✓ ✓✓✓

ChatGPT ✓✓✓ ✓✓ ✓ ✓✓ ✓✓✓ ✓ ✓✓

Open source LLMs∗ ✓ ✓✓ ✓ ✓✓ ✓✓✓ ✓ ✓✓✓
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Table 2. Summary of AutoBA application scenarios in bioinformatics multi-omics analysis. The table displays a comprehensive list of 40 real-world cases
utilized to assess AutoBA, providing information on the class of the cases, the respective task name, and the corresponding case ID.

Bioinformatics Pipelines Tasks Types of Omics Case ID

WGS data analysis Genome assembly Genomics 1.1

WGS/WES data analysis Somatic SNV+indel calling Genomics 2.1

WGS/WES data analysis Somatic SNV+indel calling and annotation Genomics 2.2

WGS/WES data analysis Structure variation identification with normal Genomics 2.3

WGS/WES data analysis Structure variation identification without normal Genomics 2.4

ChIP-seq data analysis Peak calling Genomics 3.1

ChIP-seq data analysis Motif discovery for binding sites Genomics 3.2

ChIP-seq data analysis Functional enrichment of target gene Genomics 3.3

Bisulfite-Seq data analysis Identifying DNA methylation Genomics 4.1

ATAC-seq data analysis Identifying open chromatin regions Genomics 5.1

DNase-seq data analysis Identifying Dnasel hypersensitive site Genomics 6.1

4C-seq data analysis Find genomics interactions Genomics 7.1

Nanopore DNA sequencing data analysis Genome assembly Genomics 8.1

Nanopore DNA sequencing data analysis Tandem repeats variation identification Genomics 8.2

PacBio DNA sequencing data analysis Genome assembly Genomics 9.1

RNA-Seq data analysis Find Differentially expressed genes Transcriptomics 10.1

RNA-Seq data analysis Identify the top5 downregulated genes Transcriptomics 10.2

RNA-Seq data analysis Predict Fusion gene with annotation Transcriptomics 10.3

RNA-Seq data analysis Isoform expression Transcriptomics 10.4

RNA-Seq data analysis Splicing analysis Transcriptomics 10.5

RNA-Seq data analysis APA analysis Transcriptomics 10.6

RNA-Seq data analysis RNA editing Transcriptomics 10.7

RNA-Seq data analysis Circular RNA identification Transcriptomics 10.8

Small RNA sequencing data analysis microRNA quantification Transcriptomics 11.1

Small RNA sequencing data analysis microRNA prediction Transcriptomics 11.2

CAGE-seq data analysis TSS identification Transcriptomics 12.1

3’ end-seq data analysis PAS (polyadenylation site) identification Transcriptomics 13.1

Nanopore RNA sequencing data analysis Isoform expression Transcriptomics 14.1

PacBio RNA sequencing data analysis Isoform expression Transcriptomics 15.1

CLIP-seq data analysis Identify protein-RNA crosslink sites Transcriptomics 16.1

RIP-seq data analysis Find enriched genes bounded by RBP Transcriptomics 16.2

Ribo-seq data analysis Identify translated ORFs Transcriptomics 17.1

single-cell RNA-seq data analysis Cell clustering from fastq data Transcriptomics 18.1

single-cell RNA-seq data analysis Find differentially expressed genes based on count matrix Transcriptomics 18.2

single-cell RNA-seq data analysis Find marker genes based on count matrix Transcriptomics 18.3

single-cell RNA-seq data analysis Cell clustering and visualization Transcriptomics 18.4

Spatial transcriptomics Neighborhood enrichment analysis Transcriptomics 19.1

Spatial transcriptomics Single-cell mapping Transcriptomics 19.2

Mass spectrometry data analysis Protein expression quantification Proteomics 20.1

Mass spectrometry data analysis Metabolites quantification Metabolomics 21.1

meticulously logs the outcome of each step in a specific format,
and all these historical records become part of the input for
the subsequent prompt. In the planning phase, memories are
structured as follows: “First, you provided input in the format
‘file path: file description’ in a list: <data list>. You devised a
detailed plan to accomplish your overarching objective. Your
overarching goal is <global goal>. Your plan involves <tasks>.”
In the code generation phase, memories follow this format:
“Then, you successfully completed the task: <task> with the
corresponding code: <code>.”

2.4. Automatic Code Repair of AutoBA

AutoBA incorporates an automatic code repair (ACR) module
designed to streamline the debugging process and enhance
the reliability of generated code. During the code execution
phase, AutoBA identifies errors from the output stream called
standard error (stderr) and standard output (stdout). Once an
error is detected, these detected errors will be integrated into the
prompt for code regeneration, ensuring a repetitive cycle until
the generated code successfully executes without errors.
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2.5. Evaluation of AutoBA

The results produced by AutoBA undergo thorough validation by
bioinformatics experts. This validation process encompasses a
comprehensive review of the proposed plans, generated codes,
execution of the code, and confirmation of the results for ac-
curacy and reliability. AutoBA’s development and validation are
built upon a specific environment and software stack, which in-
cludes Ubuntu version 20.04, Python 3.10.0, and openai version
0.27.6. These environment and software specifications form the
robust foundation for AutoBA’s functionality in the field of bioin-
formatics, ensuring its reliability and effectiveness. To further as-
sess the usability of AutoBA, a comparative analysis involving the
following methods was conducted: 1) AutoBA (w/o ACR, online
with ChatGPT-4), 2) AutoBA (with ACR, online with ChatGPT-
4), 3) AutoBA (w/o ACR, offline with CodeLlama-34B-Instruct),
4) AutoBA (with ACR, offline with CodeLlama-34B-Instruct), 5)
AutoGPT, 6) ChatGPT-3.5, 7) ChatGPT-4 and 8) CodeLlama-34B-
Instruct. Given that prompt engineering and workflow design is
a distinctive innovation of AutoBA, during the evaluation of Au-
toGPT, ChatGPT-3.5, ChatGPT-4, and CodeLlama-34B-Instruct,
user behavior was emulated by utilizing a generalized and uni-
form prompt as shown in the supplementary information.

2.6. Online and Local LLM Backends of AutoBA

AutoBA offers several versions of LLM backends, including on-
line backends based on ChatGPT-3.5 and ChatGPT-4, and lo-
cal LLMs, including CodeLlama-7B-Instruct, CodeLlama-13B-
Instruct, CodeLlama-34B-Instruct,[67] Llama-2-7b-chat, Llama-2-
13b-chat and Llama-2-70b-chat.[68]

2.7. Security and Safety of AutoBA

AutoBA incorporates a sandbox mode to establish a secure
and isolated environment for conducting analyses. This mode
encapsulates the analysis processes, effectively shielding the
underlying system from potential threats. Meanwhile, AutoBA
imposes restrictions on system commands throughout the
execution phase, thereby reducing the risk of malicious com-
mands being executed within the environment. Additionally,
AutoBA leverages Docker containerization, introducing an extra
layer of security to further fortify the overall system integrity.
Furthermore, Docker containerization simplifies the installa-
tion process, contributing to a reduction in learning costs for
users. A workstation with 252 GB RAM, 112 CPU cores, and 1
Nvidia A100 GPU was adopted for all experiments. AutoBA was
developed based on Python3.10 and CUDA12.0. CUDA is a par-
allel computing platform and programming model developed by
NVIDIA. AutoBA utilizes LLMs as its core for generating analysis
plans and code. These models benefit greatly from GPU acceler-
ation. CUDA allows for faster computation of model parameters,
leading to quicker generation of results and more efficient han-
dling of complex natural language processing tasks. A detailed
list of dependencies could be found in the code availability.
The online version operates without the need for a GPU, while

the offline version requires GPU support (7B: 12.55GB, 13B:
24GB, 34B: 63GB, 70B: 74GB). The sizes mentioned, such as
7B, 13B, 34B, and 70B, indicate the number of parameters in the
models (B stands for billion). The corresponding GPU memory
requirements in gigabytes (GB) are listed next to each model size.

2.8. Statistical Analysis

During the evaluation of AutoBA, all experimental data were ex-
amined at least three times on the same computational environ-
ment and data. Statistical analysis was performed using Python
packages.

3. Results

3.1. AutoBA Proposes Detailed Analysis Plans for Tasks

AutoBA offers a robust capability to generate a highly detailed
and customized analysis plan, leveraging the user’s input, which
encompasses critical elements such as data paths, data descrip-
tions, and objective descriptions.

As an example, in Figure 3, the user supplied four RNA-Seq
samples: two from the LoGlu group (SRR1374921.fastq.gz
and SRR1374922.fastq.gz, mouse pancreatic islets cultured
at low ambient glucose) and two from the HiGlu group
(SRR1374923.fastq.gz and SRR1374924.fastq.gz, mouse pan-
creatic islets cultured at high ambient glucose) from Ben-
ner et al.’s paper.[69] Additionally, the user also provided the
mouse reference genome (mm39.fa) and genome annotation
(mm39.ncbiRefSeq.gtf). The primary objective of this case was
to identify differentially expressed genes between the two data
groups. Using textual inputs only, AutoBA generated a detailed,
step-by-step analysis plan during the planning phase, as outlined
below:

1) First, I will use the “Trimmomatic” software to trim
the adapters from the single-end mouse rna-seq
reads. The input files for this step will be “./data/
SRR1374921.fastq.gz”, “./data/SRR1374922.fastq.gz”,
“./data/SRR1374923.fastq.gz”,
“./data/SRR1374924.fastq.gz” and the adapter file
“./data/TruSeq3-SE.fa”.

2) Next, I will use the “Hisat2” software to align the trimmed
reads to the mouse mm39 genome. The input files for this
step will be the output files from the previous step and the
genome file “./data/mm39.fa”.

3) Then, I will use the “Samtools” software to convert the
alignment output files from Hisat2 (in SAM format) to BAM
format.

4) After that, I will use the “HTSeq” software to count the num-
ber of reads mapped to each gene. The input files for this
step will be the BAM files from the previous step and the
annotation file “./data/mm39.ncbiRefSeq.gtf”.

5) Finally, I will use the “DESeq2” software to identify the dif-
ferentially expressed genes. The input files for this step will
be the count files from the previous step.
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Figure 3. Example of applying AutoBA to find differentially expressed genes with RNA-Seq data. In this case, the user provided four RNA-seq samples,
comprising two from the LoGlu group and two from the HiGlu group. The primary objective of this analysis was to identify differentially expressed genes
between two groups. During the automated analysis prior to the alignment run by AutoBA, the ACR module identified an error where Hisat2 did not first
index the genome. Consequently, the ACR module automatically corrected the code (highlighted in blue). This case demonstrates that AutoBA can be
used for end-to-end bioinformatics analysis. Users only need to provide the simplest inputs, and AutoBA will deliver the final analysis results.

Adv. Sci. 2024, 2407094 2407094 (7 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Within each step of the plan outlined above, AutoBA provides
precise instructions regarding the required software, including
names like Trimmomatic, Hisat2, Samtools, HTSeq, and DE-
Seq2, along with clear sub-tasks for each analytical stage. This
level of tailored planning ensures that the analysis process aligns
precisely with the user’s objectives, promoting both efficiency
and accuracy in data processing and results generation.

3.2. AutoBA Generates Precise Codes for Sub-Tasks

During the code generation phase, AutoBA generates code in
bash format for every sub-task of the plan established in the
planning phase. These scripts encompass environment setup,
software installation, and tailored code for software utilization.
Parameters and data paths specific to the software are meticu-
lously incorporated. As exemplified in Figure 3, the preliminary
phase of the differentially expressed genes (DEG) analysis consti-
tutes the essential process of adapter trimming, an indispensable
preprocessing step in the context of raw RNA-Seq data. Within
this critical step, AutoBA automatically generated code, including
activating the conda environment, installing software packages,
and calling software to analyze data as shown below:

source activate abc_runtime
conda config –add channels conda-forge
conda config –add channels bioconda
conda install -y trimmomatic
trimmomatic SE -phred33 ./data/SRR1374921.fastq.gz

./output/SRR1374921_trimmed.fastq.gz
ILLUMINACLIP:./data/TruSeq3-SE.fa:2:30:10

trimmomatic SE -phred33 ./data/SRR1374922.fastq.gz
./output/SRR1374922_trimmed.fastq.gz
ILLUMINACLIP:./data/TruSeq3-SE.fa:2:30:10

trimmomatic SE -phred33 ./data/SRR1374923.fastq.gz
./output/SRR1374923_trimmed.fastq.gz
ILLUMINACLIP:./data/TruSeq3-SE.fa:2:30:10

trimmomatic SE -phred33 ./data/SRR1374924.fastq.gz
./output/SRR1374924_trimmed.fastq.gz
ILLUMINACLIP:./data/TruSeq3-SE.fa:2:30:10

The generated code further underwent a meticulous and thor-
ough validation process, which included a manual verification
and execution performed by experienced and proficient bioinfor-
maticians, as meticulously documented in Table 3 and Supple-
mentary information. This critical validation step ensures the ac-
curacy and reliability of the code, reaffirming the robustness of
AutoBA.

3.3. AutoBA Adeptly Manages Similar Tasks with Robustness

In practical bioinformatics applications, even when researchers
are working with similar data types, such as RNA-Seq, it is note-
worthy that analyses often manifest variations stemming from
diverse sources. These variations are primarily attributed to dis-
parities in the characteristics of input data and the distinct objec-
tives pursued in the analytical process.

As exemplified in Case 10.1 (find differentially expressed
genes), Case 10.2 (identify the top five down-regulated genes in
HiGlu group), and Case 10.3 (predict fusion genes), when per-
forming RNA-Seq analysis, users may have distinct final goals,
necessitating adjustments in software and parameter selection
during the actual execution. In comparison to case 10.1, AutoBA
introduces an additional step in case 10.2, tailored for screening
the top five differentially expressed genes to fulfill the user’s spe-
cific requirements as shown in the code below:

Rscript -e ‘‘library(’pheatmap’); library(’DESeq2’);
res<- read.csv(’./examples/output/differential_expression_
results.csv’, row.names=1); res_ordered<-
res[order(res$log2FoldChange),]; top5_downregulated<-
head(res_ordered, 5);

3.4. AutoBA Adjusts Analysis Based on Task and Input Data
Variations

Alignment is an essential step for bioinformatic analysis, for
which multiple tools have been developed for distinct tasks. For
instance, tools including STAR[70] and HISAT2[71] designed for
RNA-seq data analysis are splicing aware, which is efficient in
identifying junction reads that map to two distal positions in
the reference genome. Besides, long-read sequencing data from
Pacific Bioscience (PacBio) and Oxford Nanopore Technology
(ONT) also require specialized tools for the alignment, for which
Minimap2[72] is the most widely used method. Moreover, each
read from single-cell sequencing data contains barcodes for UMI
and cell labels, which needs to be integrated with the alignment.
CellRanger is a popular software with this capacity. Therefore,
bioinformatic analysis should use appropriate tools for the align-
ment based on the types of tasks. Interestingly, we found that
AutoBA has learned this knowledge and can correctly employ the
tool for the alignment (Figure 4a).

For many bioinformatic analyses, multiple tools are available
but require different conditions of inputs. For instance, to iden-
tify structural variations from tumor WGS/WES data, the method
“manta”[73] can handle the analysis against the matched normal.
On the other hand, tools like “Pindel”[74] that relies on the de-
tection of breakpoints with the reference genome, only conduct
analysis on the tumor samples. We found that AutoBA can auto-
matically select “manta” when the matched normal samples were
provided and correctly utilized the parameters “–normalBam”
and “–tumorBam”. However, if only the tumor samples were pro-
vided in the input data, AutoBA will select “Pindel” for the anal-
ysis (Figure 4b). These results suggest that AutoBA learned the
requirements of different bioinformatic tools and is capable of
selecting appropriate tools based on different conditions of the
input data.

manta –normalBam ./output/SRR23015874.recalibrated.bam
–tumorBam ./output/SRR23015876.recalibrated.bam
–referenceFasta ./data/hg38.fa –runDir ./out-
put/manta_SRR23015874
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Table 3. Summary of AutoBA (w/o ACR) generated results evaluated by bioinformatics experts. The table presents an assessment conducted by bioinfor-
matics experts on the analysis plan proposed by AutoBA, along with the generated codes and the code execution. If the evaluation passes, it is displayed
as success, while instances of failure are accompanied by detailed explanations of the specific reasons for the failure. Additionally, we provide a summary
of the software tools automatically chosen by AutoBA for each case, as well as the total time taken to generate the corresponding code.

Case ID Propose Plans Generate Codes Execute Codes Tools Used Time Cost (without
Executing Codes) in

Minutes

1.1 Success Success Success FastQC, Trimmomatic[76], SPAdes[77], QUAST[78] 3

2.1 Success Success Success FastQC, Trimmomatic, BWA[79], Samtools[80], GATK[81] 8

2.2 Success Success Success FastQC, Trimmomatic, BWA, Samtools, GATK,
ensembl-vep[82]

8

2.3 Success Success Success FastQC, Trimmomatic, BWA, Samtools, GATK, manta[73] 18

2.4 Success Success Failed: pindel requires
configuration file

FastQC, Trimmomatic, BWA, Samtools, pindel[74],
SnpEff[83]

6

3.1 Success Success Success FastQC, Trim Galore, Bowtie 2[84], Samtools, MACS2[85],
BEDTools, IGV

6

3.2 Success Success Success FastQC, Trim Galore, Bowtie2, MACS2, HOMER,
MEME[86]

4

3.3 Failed: DESeq2 is
not suitable for
peaks identified
by MACS2

– – FastQC, BWA, MACS, BEDTools[87], DESeq2[88],
g:Profiler[89], R[90]

6

4.1 Success Success Success Trim Galore, Bismark[91], IGV[92] 9

5.1 Success Success Failed: (wrongly used
BEDTools)

Trim Galore, BWA, Samtools, MACS2, BEDTools 8

6.1 Success Success Success FastQC, Cutadapt, BWA, MACS2, IGV, GREAT[93] 5

7.1 Success Success Success FastQC, BEDTools, Samtools, Bowtie 2, R 6

8.1 Success Success Failed: racon medaka
wrongly used the
parameters

canu[94], Minimap2[72], Racon[95], Flye[96], Medaka,
Bandage[97]

7

8.2 Failed: cannot
find a correct
pipeline

– – Minimap2, Samtools, trf[98] 7

9.1 Success Failed: install the
wrong tool,
pb-falcon rather
than falcon

– Canu, FALCON[99], Quiver, MUMmer[100] 7

10.1 Success Success Success FASTQC, Trimmomatic, HISAT2[71], htseq[101], DESeq2 5

10.2 Success Success Success FASTQC, Trimmomatic, HISAT2, htseq, DESeq2, gprofileR 5

10.3 Success Success Success gunzip, HISAT2, fusioncatcher[102], gffcompare[103] 6

10.4 Success Success Success Trim Galore, HISAT2, Samtools, StringTie 5

10.5 Success Success Success Trimmomatic, HISAT2, Samtools, StringTie,
featureCounts[36], rMATs[38]

6

10.6 Success Failed: DaPars (not
available in conda)

– Trim Galore, HISAT2, StringTie, DaPars[104] 7

10.7 Failed: cannot
find a correct
pipeline

– – FastQC, Trimmomatic, HISAT2, Samtools, StringTie,
ballgowan[105], GATK

7

10.8 Success Failed: CIRI2 (not
available in conda)

– Trim Galore, HISAT2, CIRI2[106], CIRIQuant[107] 5

11.1 Success Success Success Fastqc, Cutadapt, Bowtie, Samtools,
subread/featureCounts, DESeq2, edgeR[108]

11

11.2 Success Success Failed: conda of
miRDeep2 is
problematic

Fastqc, Cutadapt, Bowtie, Samtools, featureCounts,
miRDeep2, DESeq2, edgeR

11

(Continued)
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Table 3. (Continued)

Case ID Propose Plans Generate Codes Execute Codes Tools Used Time Cost (without
Executing Codes) in

Minutes

12.1 Success Success Success Fastqc, Trimmomatic, HISAT2, HTSeq/htseq-count,
CAGEr[109]

6

13.1 Failed: cannot
find a correct
pipeline

– – Trim Galore, HISAT2, StringTie, DaPars 5

14.1 Success Success Failed: prepDE.py no
need to run with
’python prepDE.py’

Minimap2, Samtools, StringTie, DESeq2 9

15.1 Success Success Success Minimap2, Samtools, StringTie, cufflinks[110] 5

16.1 Success Success Failed: conda of
Piranha is
problematic

FastQC, Cutadapt, Bowtie2, Samtools, BEDTools, Piranha 6

16.2 Success Success Success FastQC, Trim Galore, HISAT2, htseq, DESeq2 4

17.1 Success Success Failed: not regular
conda of ribotaper

FastQC, Trim Galore, HISAT2, Samtools, StringTie,
RiboTaper[111]

7

18.1 Success Success Success Cell Ranger, Seurat[112] 5

18.2 Success Success Success Scanpy[113] 8

18.3 Success Success Success Scanpy 6

18.4 Success Success Success Scanpy 5

19.1 Success Success Success Squidpy[114], AnnData 5

19.2 Success Success Success AnnData, Scanpy, Tangram[115] 3

20.1 Success Success Success proteowizard[116], OpenMS[117] 15

21.1 Success Success Success pymzml[118], pandas, numpy, scipy 13

#Success 36 33 26 – –

3.5. Apply AutoBA to a Variety of Conventional Multi-Omic
Analysis Scenarios

To evaluate the robustness of AutoBA, we conducted assessments
involving a total of 40 cases spanning four distinct types of omics
data: genomics, transcriptomics, proteomics, and metabolomics
as shown in Table 2 and Supporting Information.

All cases underwent an independent analysis process con-
ducted by AutoBA and were subsequently subjected to validation
by experienced bioinformatics experts. The collective results un-
derscore the versatility and robustness of AutoBA across a spec-
trum of multi-omics analysis procedures in the field of bioinfor-
matics as shown in Table 3. AutoBA demonstrates its capability
to autonomously devise novel analysis processes based on vary-
ing input data, showcasing its adaptability to diverse input data
and analysis objectives with a success rate of 90% (36 out of 40)
for proposing plans, 82.5% (33 out of 40) for generating codes
to obtain and install appropriate tools, and 65% (26 out of 40)
for automated end-to-end analysis. With the incorporation of the
ACR module, AutoBA demonstrates enhanced robustness, with
the same success rate of 90% (36 out of 40) for proposing plans,
but a higher success rate of 87.5% (35 out of 40) for generating
codes to obtain and install appropriate tools, and 87.5% (35 out
of 40) for automated end-to-end analysis. Compared to the online
version, the local version showed a slight decline in performance
as shown in Figure 4d.

3.6. AutoBA Reduces Human Intervention and Increases
Robustness Compared to Other Methods

As shown in Figure 4c, we conducted a conceptual comparison
between AutoBA and alternative methods in terms of human
intervention. In utilizing conventional bioinformatics tools and
web servers, users are required to prepare input data and com-
prehend detailed analysis plans prior to execution. Throughout
the execution phase, users must configure the environment,
install essential dependencies, write code, and proceed with
step-by-step debugging. In contrast, ChatGPT and other open-
source LLMs assist users in proposing step-by-step plans and
generating code, thus mitigating human intervention. Never-
theless, users still need to manually configure the environment,
execute code, and perform debugging. AutoGPT, functioning as
an AI agent, aids users in executing generated code to further
minimize human intervention. However, within the context of
bioinformatics data analysis, AutoGPT encounters challenges in
setting up the environment and debugging for users. Conversely,
AutoBA significantly reduces human intervention, necessitating
only the preparation of input data.

To show the robustness of AutoBA, we further conducted
a comprehensive comparison of eight methods, including 1)
AutoBA (w/o ACR, online with ChatGPT-4), 2) AutoBA (with
ACR, online with ChatGPT-4), 3) AutoBA (w/o ACR, offline
with CodeLlama-34B-Instruct), 4) AutoBA (with ACR, offline

Adv. Sci. 2024, 2407094 2407094 (10 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 4. Results of AutoBA and the comparison with other methods. a) Heatmap illustrating options of utilizing different alignment tools for multiple
tasks planned by AutoBA. b) AutoBA utilizes the tools for identifying structure variations in tumor samples with or without the matched normal samples.
The highlight shows the difference between Goal 1 and Goal 2. c) Conceptual comparison of AutoBA with other methods in terms of human intervention.
Orange indicates the need for human intervention, while green signifies an absence of human intervention (fully automated process). d) Evaluation of
results generated by various methods by manually checking and executing codes and comparing them to standard analysis pipelines. Orange indicates
a failure, and blue indicates a success.
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with CodeLlama-34B-Instruct), 5) AutoGPT, 6) ChatGPT-3.5, 7)
ChatGPT-4 and 8) CodeLlama-34B-Instruct, across all 40 cases,
as illustrated in Figure 4d. AutoBA showed better performance in
comparison to AutoGPT (90% for proposing plans, 25% for gen-
erating codes to obtain and install appropriate tools, and 0% for
automated end-to-end analysis), ChatGPT-3.5 (92.5% for propos-
ing plans, 30% for generating codes to obtain and install ap-
propriate tools, and 2.5% for automated end-to-end analysis),
ChatGPT-4 (92.5% for proposing plans, 37.5% for generating
codes to obtain and install appropriate tools, and 7.5% for au-
tomated end-to-end analysis), and CodeLlama-34B-Instruct (80%
for proposing plans, 7.5% for generating codes to obtain and in-
stall appropriate tools, and 2.5% for automated end-to-end anal-
ysis).

4. Discussion

To our knowledge, AutoBA is the first autonomous AI agent tai-
lored explicitly for conventional multi-omic analyses for omics
data. AutoBA streamlines the analytical process, requiring min-
imal user input while providing detailed step-by-step plans for
various bioinformatics tasks (Video S1, Supporting Information).
The results of our investigation reveal that AutoBA excels in ac-
curately handling a diverse array of omics analysis tasks, such
as RNA-seq, scRNA-seq, ChIP-seq, spatial transcriptomics, and
so on. One of the key strengths of AutoBA is its adaptability to
variations in analysis objectives. As demonstrated in the cases
presented, even with similar data types, such as RNA-Seq, users
often have distinct goals, necessitating modifications in software
and parameter selection during execution. AutoBA effectively ac-
commodates these variations, allowing users to tailor their anal-
yses to specific research needs without compromising accuracy.
Furthermore, AutoBA’s versatility is highlighted by its ability to
self-design new analysis processes based on differing input data.
This autonomous adaptability makes AutoBA a valuable tool for
bioinformaticians working on novel or unconventional research
questions, as it can adjust its approach to the unique characteris-
tics of the data.

Online bioinformatics analysis platforms are currently in
vogue, but they often necessitate the uploading of either raw data
or pre-processed statistics by users, which could potentially give
rise to privacy concerns and data leakage risks. In contrast, Au-
toBA addresses these privacy issues by offering both online ver-
sion and local version. When utilizing the online version of Au-
toBA with ChatGPT, data uploads are unnecessary, requiring only
descriptive information in natural language as specified in our
prompt design. This information is limited in terms of private
details. In comparison, the local version of AutoBA provides the
highest level of privacy protection, as it operates on local back-
ends and eliminates the need to share any information with third
parties. Moreover, AutoBA showcases its adaptability in sync with
emerging bioinformatics tools, with LLM seamlessly incorporat-
ing these latest tools into the database. Furthermore, AutoBA is
inclined toward selecting the most popular analytical frameworks
or widely applicable tools in the planning phase, underscoring its
robustness. Another distinguishing feature is AutoBA’s transpar-
ent and interpretable execution process. This transparency allows
professional bioinformaticians to easily modify and customize

AutoBA’s outputs, leveraging AutoBA to expedite the data analy-
sis process.

AutoBA is also a future-proof AI agent designed for bioin-
formatics analysis, leveraging LLMs as its core. This design al-
lows AutoBA to integrate with any existing LLM, whether online
(e.g., ChatGPT, GPT-4, GPT-4o) or offline (e.g., LLaMA, CodeL-
LaMA, and DeepSeek). The LLM used in AutoBA is fully substi-
tutable, enabling it to benefit from the continual advancements
in LLM technology. As new state-of-the-art LLMs are developed,
AutoBA can incorporate them to enhance its performance in au-
tomatic bioinformatics analysis. Still, AutoBA’s limitation in tool
selection does exist. Current LLMs are trained on internet data,
meaning that widely used methods in bioinformatics are typi-
cally well-trained, while methods from specific papers may be
underrepresented or not trained at all. As a result, the best out-
comes are achieved when using tools that have been extensively
trained, which can lead to potential biases in tool selection. To
address this, training a specialized LLM for bioinformatics that
thoroughly covers all tools and methods in the field could be a
solution in the future.

Given that classical bioinformatic analysis encompasses a far
broader spectrum of tasks and challenges than the 40 cases stud-
ied in this work (Tables 2 and 3), it is essential to conduct more
real-world applications by our potential users to further com-
prehensively validate the robustness of AutoBA. We found that
a large proportion (36%, 5 out of 14) of failed cases in execut-
ing code is due to the tools in conda being problematic, not in
a regular form (end with .sh, .pl et al), or requiring an edited
config file, suggesting a demand for more standard bioinformat-
ics tools. Furthermore, taking into account the timeliness of the
training data used for large language models, it’s important to
note that some of the most recently proposed methods in bioin-
formatics may still pose challenges in automatically generating
code by AutoBA. Therefore, a future endeavor to train an up-to-
date large language model explicitly tailored for bioinformatics
can significantly enhance AutoBA’s ability to maintain up-to-date
code generation capabilities. Nevertheless, AutoBA represents a
significant advancement in the field of bioinformatics, offering
a user-friendly, efficient, and adaptable solution for a wide range
of omics analysis tasks. Its capacity to handle diverse data types
and analysis goals, coupled with its robustness and adaptabil-
ity, positions AutoBA as a valuable asset in the pursuit of accel-
erating bioinformatics research. We anticipate that AutoBA will
find extensive utility in the scientific community, supporting re-
searchers in their quest to extract meaningful insights from com-
plex biological data.
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raw single-cell RNA sequencing data could be downloaded from 10X
genomics. The PacBio long-read sequencing data could be downloaded
from SRA with IDs: SRR19552218 and SRR19785215. The small RNA-seq
data could be downloaded from the previous study.[75]
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