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SUMMARY
Gene regulation is a central topic in cell biology. Advances in omics technologies and the accumulation of
omics data have provided better opportunities for gene regulation studies than ever before. For this reason
deep learning, as a data-driven predictive modeling approach, has been successfully applied to this field
during the past decade. In this article, we aim to give a brief yet comprehensive overview of representative
deep-learning methods for gene regulation. Specifically, we discuss and compare the design principles
and datasets used by each method, creating a reference for researchers who wish to replicate or improve
existing methods. We also discuss the common problems of existing approaches and prospectively
introduce the emerging deep-learning paradigms that will potentially alleviate them. We hope that this article
will provide a rich and up-to-date resource and shed light on future research directions in this area.
INTRODUCTION

Understanding gene regulation is a central topic in cell biology.

Gene regulation in eukaryotes takes place at various stages of

the central dogma, including the genomic level, transcriptomic

level, and proteomic level. During the past two decades,

advances in omics technologies, including those in genomics,

transcriptomics, and proteomics, have enabled a better system-

atic understanding of multiple levels of gene regulation than ever

before. Developments in microarray, DNA and RNA sequencing,

mass spectrometry, and single-cell technologies have provided

foundations for experimental techniques to study gene regula-

tion at a greater scale and finer resolution. This includes

techniques such as chromatin immunoprecipitation sequencing

(ChIP-seq)1 for protein-DNA binding, cross-linking immunopre-

cipitation sequencing (CLIP-seq)2,3 for protein-RNA binding,

DNase I hypersensitive sites sequencing (DNase-seq)4 and

assay for transposase-accessible chromatin using sequencing

(ATAC-seq)5 for genomic-wide chromatin accessibility, high-

throughput RNA sequencing (RNA-seq) for gene expression

level profiling, and 30 region extraction and deep sequencing

(30-READS)6 for polyadenylation. In the meantime, large omics

projects utilizing such techniques, such as the 1000 Genomes

Project,7 Encyclopedia of DNA Elements (ENCODE),8 Roadmap

Epigenomics,9 and the Genotype-Tissue Expression (GTEx)

project,10 have been launched to decipher biological processes

at various levels from genotype to phenotype in various individ-

uals, species, and tissue types. Concurrently, omics data from
Cell Rep
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individual studies are continuously uploaded to and collected

by publicly accessible databases such as the Sequence Read

Archive (SRA),11 the European Nucleotide Archive (ENA),12 and

the UniProt Archive (UniParc).13 The aforementioned projects

and databases have proved to be invaluable resources for omics

studies because they not only support discoveries in the original

studies but also enable continued analysis by independent

researchers.

As a result, the requirement of analytical algorithms to

process, interpret, and discover patterns in omics data has

been stronger than ever before. Statistical learning-based

data-mining algorithms, such as logistic regression (LR), support

vector machines (SVM), and hidden Markov models, have been

extensively applied in omics since its inception.14,15 Such algo-

rithms are sometimes termed ‘‘shallow learning’’ algorithms

because they operate on extracted features from an object of

interest and run only a few inference steps as specified by a

pre-determined statistical model. Although effective, such

models rely heavily on how those features are engineered. A

good feature engineering technique that captures a highly

discriminative pattern will result in much better performance

than those that overlook them. In the fields where knowledge

of such patterns is limited (as is usually the case in omics),

feature engineering-based machine-learning algorithms using a

priori knowledge usually fail to take care of important aspects

that are beyond our current understanding. Relying on feature

engineering will result in degraded performance and potentially

miss new discoveries. Such an approach could also result in
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poor model generalizability, as features used in one scenario

may not be as effective in other cases. It would be very much

appreciated if such discriminative features can be automatically

discovered by the learning algorithms directly from the data

themselves.

Since 2012, deep learning has achieved remarkable success

in various other fields via a data-driven approach.16 Deep

learning is a general term for machine-learning algorithms that

are made up of deep neural networks (DNNs). DNNs consist of

multiple artificial neural network layers, which are biologically

inspired data-processing units that serve as non-linear transfor-

mation functions of their inputs. As each layer takes as input the

result from the previous layer, the transformation becomes

increasingly complex when the number of layers increases.

Those functions are learnable in the sense that they can adjust

themselves during the ‘‘training’’ process. Deep-learning models

are usually trained by fitting themselves on the training data

through the optimization of an objective function (the ‘‘loss func-

tion’’) using the gradient descent algorithm.16 It is then expected

to be able to perform inference tasks on data that come from the

same or similar statistical distribution as the training data.

Although the success of deep learning is in part due to its

learning capacity, generalizability, and computational efficiency

on dedicated computational architectures, the most important

aspect is its representation learning ability. In contrast to the

‘‘shallow learning’’ algorithms, deep learning, based on DNNs,

perform inference tasks with a deep and hierarchical architec-

ture. The lower layers in the hierarchy learn the ‘‘representa-

tions,’’ which are highly discriminative features discovered by

the algorithm using a data-driven approach. Its higher layers

summarize the representations from the lower layers and

produce the result of the inference. This makes deep learning

especially useful in omics because it overcomes the limitations

of the ‘‘shallow learning’’ methods and could discover patterns

in biological sequences or measurements that are yet unknown.

This is undoubtedly one of the reasons why many successful

deep-learning applications in omics have emerged in the past

decade. In addition, copious omics data take a form that is

amenable to being processed by deep-learning algorithms. For

example, there is a similarity between biological sequences

and natural languages. Certain sequence motifs serve as reg-

ulatory codes, and the interactions between such codes

serve as the regulatory grammar. This has led to numerous suc-

cessful biological applications of off-the-shelf deep-learning

models.17–19 Returning to the topic of gene regulation, it will be

of great interest to find out whether deep learning in omics can

decipher the regulatory code and grammar, model the regulatory

process, help us understand the regulatory mechanism, and

assist us in achieving the major goals of omics.

In this survey and perspective, we aim to give a brief yet

systematic review of the application of deep learning in gene

regulation studies with various kinds of omics data. Wewill cover

applications of deep learning at various omics levels, including

the genomic, transcriptomic, and proteomic levels (Figure 1).

We will focus on the formulation of various prediction tasks

addressing different biological questions that are attempted by

deep learning. We will investigate the model architectures used

by the studies and discuss their functionalities and design
2 Cell Reports Methods 3, 100384, January 23, 2023
principles. In particular, we comprehensively list the datasets

that are used in each study as a convenient reference for

researchers willing to replicate existing methods or develop

new methods in this field. Prospectively, we will discuss the

application potential of various emerging deep-learning para-

digms, such as self-supervised learning, meta-learning, and

large-scale pre-trained models for biological sequences, that

will potentially alleviate the problems of existing approaches.

We also point out the trend of using the integration of structural

information, multi-omics profiles, and single-cell profiles for

gene regulation studies. We hope that this article will provide a

rich and up-to-date resource and serve as a starting point for

new researchers interested in this area.

REVIEW OF DEEP-LEARNING APPLICATIONS IN GENE
REGULATION

Types of neural networks used in gene regulation
studies
During the past decade, the neural network models used in gene

regulation studies have largely followed what has been used in

computer vision and natural language processing, from which

deep learning first originated. The most popular types include

multi-layer perceptrons (MLPs) (Figure 2A), which are quite pop-

ular in early applications of deep learning on tabular data. The

input layer ofMLPsdirectly takes in the data values from the input

dataset and is subsequently processed by one or more hidden

layers. Finally, an output layer summarizes the processed infor-

mation of the earlier hidden layers to produce the final prediction.

Following the success in image recognition and text classifica-

tion, convolutional neural networks (CNNs)20 have proved to be

very useful for handling raw biological sequence data, whether

it is DNA, RNA, or protein sequences (Figure 2B). The CNNs

employ convolution filters to process sequential or image data

in a way that respects the spatial structure of the data. To handle

long-range interactions of sequential data, recurrent neural net-

works (RNNs) such as gated recurrent units (GRUs)21 and long

short-term memory (LSTM)22 have received particular interest

in biological sequence analysis (Figure 2C). The RNNs employ

hidden states in the network that will remember sequential infor-

mation at earlier locations. These hidden states benefit the

modeling of long-range interactions. Graph neural networks

(GNNs) are designed to handle structured datasets that are rep-

resented as a graph (Figure 2D). GNNs also have input, hidden,

and output layers in their architectures. In contrast to plain

MLPs that handle individual data points independently, the hid-

den layers and output layers of GNNs respect the topological

structureof thedataset. Inmore recent years, inspiredby the suc-

cess in natural language processing and understanding, Trans-

formers19,23,24 have also received a lot of attention for biological

sequence data processing (Figure 2E). Transformers are power-

ful learners of sequential data, partly due to their employment of

the self-attention mechanism that handles the pairwise interde-

pendencies between the sequence elements. More recently,

Transformers are also popular choices for self-supervised

learning on biological sequences,18 which wewill discuss in sub-

sequent sections. According to the nature of the prediction tasks

formulated in each study, researchers designed deep-learning



Figure 1. Deep-learning applications in gene regulation at various omics levels
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architectures utilizing one or more of the aforementioned

networkswith highly customizedconfigurations toachievehigher

performance, greater computational efficiency, and better bio-

logical interpretability. In this article, we do not wish to provide

a comprehensive introduction to the neural network types used

in deep learning. Instead, we refer readers to dedicated hands-

on tutorials25,26 and introductory textbooks27 on deep learning.

Genomic-level applications
In this section, we review the most representative research

works that applied deep learning to the study of genomic-level

regulations. All works that we review have formulated a super-

vised learning problem and can predict functional genomic

features from the genomic sequence. In this way, they aim to

decipher the regulatory code and grammar from the genomic

sequence and predict how genetic variations will affect a partic-

ular regulatory mechanism.

The relevant studies and methods are listed and summarized

in Table 1. In particular, we list the functionalities each method

achieves, the datasets eachmethod uses, and the deep-learning

architectures on which themethods are based. As the regulatory

code and grammar of genomic sequences are interpreted differ-

ently in different organisms and tissue/cell types, most models

have particular ways to provide organism- and tissue-/cell-

type-specific predictions. Therefore, we particularly highlight

the species and tissue/cell types that are involved in each study.
Deepbind17 is a pioneer work dedicated to the prediction of

nucleic acid-protein binding. Based on a CNN architecture, it

can learn from multiple DNA-protein binding experimental

profiling technologies, including protein binding microarrays60

(PBM), ChIP-seq,1 and HT-SELEX.61 DeepSEA30 is one of the

seminal works that applied deep learning to whole-genome

functional genomics annotations. DeepSEA uses a CNN-based

architecture that takes in 1,000-bp human genomic DNA

sequence and performs amulti-task prediction of DNase I hyper-

sensitivity (DHS), transcription factor (TF) binding, and histone

modification in multiple cell lines. DeepSEA was trained on 125

DHS profiles (by DNase-seq4) and 690 TF binding profiles (by

ChIP-seq1 for 160 distinct TFs) from ENCODE,8 and 104 histone

modification profiles (by ChIP-seq) from Roadmap Epigenom-

ics.31 DeepSEA uses one model to predict the signals measured

from 919 epigenomic profiles (including 125 DHS predictions,

690 TF binding predictions, and 104 histonemodification predic-

tions). This multi-task design allows it to share the learned

genomic grammar while performing different tasks. Additionally,

the authors trained a boosted logistic classifier using the predic-

tions of DeepSEA and showed that it could prioritize functional

non-coding regulatory mutations in HGMD32 and expression

quantitative trait loci (eQTL) in GRASP.33

Motivated by the success of DeepSEA, follow-up works have

improved and extended DeepSEA in multiple different aspects.

Basset34 is also a CNN-based model particularly focused on
Cell Reports Methods 3, 100384, January 23, 2023 3



Figure 2. Common deep-learning architectures used in gene regulation studies

(A) Multi-layer perceptron.

(B) Convolutional neural network.

(C) Recurrent neural network.

(D) Graph neural network.

(E) Transformer.
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DHS prediction. It extends DeepSEA’s DHS prediction to a total

of 164 cell types (125 cell types from ENCODE8 and 39 cell types

from Roadmap Epigenomics9). Basset trained cell-type-specific

models by fitting one model for each cell type. Instead of using

the pure CNN architecture, DanQ35 explored the effectiveness

of a hybrid architecture combining CNN and bidirectional
4 Cell Reports Methods 3, 100384, January 23, 2023
LSTM (BiLSTM). It outperformed DeepSEA even though they

were trained exactly on the same dataset.

The above integrative functional genomic models do not

shadow the effectiveness of dedicated predictive models.

CpGenie36 predicts genomic DNA methylation status from their

sequences. It was trained on restricted representation bisulfite



Table 1. Genomic-level deep-learning applications

Method name Year

Functionalities

Datasets Model Species

Tissue/cell

typesDHSa Histonea TFa Varianta DNA met.a 3Da

Functional genomic models:

Deepbind17 2015 U U

d DREAM528 TF-DNA

Motif Recognition

Challenge (PBM) (84

mouse TFs)

d ENCODE (ChIP-seq)

d Jolma et al.29 (HT-

SELEX)

d CNN (101 bp input)

human, mouse multiple

DeepSEA30 2015 U U U U

d ENCODE8

o 125 DHS profiles

o 690 TF binding

profiles of 160 TFs

d Roadmap Epigeno

mics31

o 104 histone modi-

fication profiles

d HGMD (non-coding

regulatory muta-

tions)32

d GRASP (non-coding

eQTLs)33

d CNN (1 kb input)

d multi-task learning

human multiple

Basset34 2016 U U

d ENCODE (DNase-seq

125 cell types)

d Roadmap Epigenom-

ics (DNase-seq 39 cell

types)

d CNN (600 bp input)

human multiple

DanQ35 2016 U U U U

d the same dataset as

DeepSEA

d CNN + BiLSTM

(1 kb input)

human multiple

CpGenie36 2017 U U

d ENCODE (RRBS and

WGBS data)

d CNN (1,001 bp

input)

human, mouse multiple lymphoblastoid

cell lines

De-Fine37 2018 U U

d ENCODE (TF binding

profiles of K562 and

GM12878)

d CNN (300 bp

input)

human K562 and GM12878

(Continued on next page)
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Table 1. Continued

Method name Year

Functionalities

Datasets Model Species

Tissue/cell

typesDHSa Histonea TFa Varianta DNA met.a 3Da

Basenji38 2018 U U U

d ENCODE (DNase-seq

593 profiles, Histone

modification 1,704

profiles)

d Roadmap Epigenom

ics (DNase-seq 356

profiles, Histone

modification 603 pro-

files)

d FANTOM539 (973

CAGE40 experiments)

d All sequencing data-

sets are remapped

and genomic coverage

is re-estimated with

multi-mapping reads

in consideration

d CNN (131 kb input,

with dilated convolu-

tion and densely

connected layers)

d multi-task learning

human multiple

Expecto41 2018 U U U U

d ENCODE (DNAse-seq

125 profiles, TF ChIP-

seq 690 profiles)

d Roadmap Epigenom-

ics (DNase-seq 209

profiles, Histone

modification 978 pro-

files)

d 218 tissue expression

profiles from

ENCODE, Roadmap

Epigenomics, and

GTEx.10

d three-stage model

o stage one: epige

nomic effects

model

d CNN-based

d 2,000 bp input

o stage two: spatial

transformation

o stage three:

expression predic-

tion

human multiple (>200)

(Continued on next page)
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Table 1. Continued

Method name Year

Functionalities

Datasets Model Species

Tissue/cell

typesDHSa Histonea TFa Varianta DNA met.a 3Da

Xpresso42 2020 U U

d gene expression data

o protein coding

gene expression of

56 tissues from the

Roadmap Epige-

nomics

o 254 mouse RNA-

seq datasets from

ENCODE

d promoter sequences

from FANTOM5

d CNN (with dilated

convolution,

10.5 kbp input)

human, mouse multiple

DeepMEL43 2020 U U

d omniATAC-seq data

containing 16 human

melanoma cell lines44

o 24 co-accessible

regions (‘‘topics’’)

identified by cis-

Topic45

d similar architecture

as DanQ (500 bp

input)

trained on human,

with cross-species

generalizability

melanoma samples

Enformer46 2021 U U U U

d same dataset as used

in Kelley47

o human: 38,171 se-

quences, 2,131 TF

binding profiles,

1,860 histone mark

profiles, 684

DNase-seq or

ATAC-seq profiles,

and 638 CAGE

tracks

o mouse: 23,421 se-

quences, 308 TF

binding profiles,

750 histone mark

profiles, 228

DNase-seq or

ATAC-seq profiles,

and 357 CAGE

profiles

d CNN + Transformer

(196 kb input)

d cross-species training

human, mouse multiple
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Table 1. Continued

Method name Year

Functionalities

Datasets Model Species

Tissue/cell

typesDHSa Histonea TFa Varianta DNA met.a 3Da

BPNet48 2021 U

d ChIP-nexus49 profiles

of four pluripotency

TFs (Oct4, Sox2,

Nanog, and Klf4) at

147,974 genomic

regions

d 10-layer CNN (1 kb

input, with dilated

convolution and resid-

ual connections)

d multi-task prediction

of four TFs

mouse mESC

3D genomic models:

Akita50 2020 U U

d human cell line HFF

Micro-C51

d human cell line

H1hESC Micro-C51

d human cell line

GM12878 Hi-C52

d human cell line IMR90

Hi-C52

d human cell line

HCT116 Hi-C53

d mouse mESC Micro-

C54

d mouse neural devel-

opment Hi-C55

d Akita ‘‘trunk:’’ Basenji-

like architecture for

genomic DNA

sequence processing

(�1 Mb)

d Akita ‘‘head:’’ for

transforming 1D

genome representa-

tions to 2D genome-

folding maps (�2 kb

bins)

o pairwise averaging

deep-learning rep-

resentations

o addition of

genomic distances

between bins via

positional embed-

ding

human, mouse multiple (multiple human

and mouse cell lines;

mouse neuronal tissues)

Orca56 2022 U U U U

d human cell line HFF

Micro-C51

d human cell line

H1hESC Micro-C51

d multi-resolution 1D-

CNN encoder (256, 32,

and 1 Mb input)

o with an auxiliary

prediction of his-

tone modifications

and DNase-seq

d cascading 2D-CNN

decoder

human multiple (HFF and H1

hESC cell lines)
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sequencing (RRBS) and whole-genome bisulfite sequencing

(WGBS) profiles from ENCODE. De-Fine37 focused on TF bind-

ing prediction and was trained specifically on TF binding profiles

from the K562 and the GM12878 cell lines from ENCODE. In

contrast to the previous studies, De-Fine used a cell-line-spe-

cific genome sequence instead of the human reference genome

sequence, pointing out that cell-line-specific genomic variation

may affect model training and prediction. It also experimented

with quantitative prediction instead of binary prediction of func-

tional genomic elements.

More recent studies further improved the network architecture

and integrated genomic predictions with transcriptomic predic-

tions, such as promoter activity and gene expression levels.

Compared with the previous methods, Basenji,38 as a successor

to Basset, significantly enlarged the size of genomic sequence

that a CNN-based model can take in. Using the ‘‘dilated convo-

lution’’62 that exponentially increases the receptive field of high-

level neurons, the model is able to process 131 kbp inputs. The

model is, therefore, able to recognize motifs that have long-

range dependencies. To make quantitative predictions of each

genomic feature, Basenji uses Poisson regression-based log

likelihood as the loss function. Expecto,41 which is an official

redesign of DeepSEA by the original authors, enlarges

DeepSEA to a three-stage model. The first stage is still CNN

based and resembles the original DeepSEA model, but with

larger-sized input (2,000 bp). The second stage is a spatial trans-

formation module that reduces dimensionality and weighs con-

tributions from nearby sites according to their relative distance.

The third stage performs a gradient-boosted linear regression

of the gene expression levels using the genomic features pro-

duced from stage 2 and 218 tissue expression profiles from

GTEx,10 Roadmap Epigenomics, and ENCODE. Expecto was

shown to be able to prioritize mutations related to several immu-

nity-related diseases, such as Crohn’s disease, ulcerative colitis,

inflammatory bowel disease, and Bechet’s disease. Similar to

the prediction target of Expecto, Xpresso42 is also a gene

expression level predictor. However, Xpresso was deliberately

designed tomake such predictions based purely on the genomic

sequence surrounding the promoter (�10.5 kbp). By inspecting

the discrepancy between model prediction and ground-truth

measurements, the researchers made interesting discoveries

of several genes’ regulatory mechanisms beyond their promoter

activity. This included polycomb-mediated transcriptional gene

silencing,63 enhancer-mediated transcriptional gene activation,

and microRNA-mediated gene repression. Enformer46 is the first

to employ the CNN + Transformer hybrid architecture for gene

expression level and epigenetic feature prediction. Using the

same dataset as Basenji247 (an updated version of Basenji), it

achieved remarkably higher accuracy than its predecessors. En-

former was trained by alternately feeding in human and mouse

genomic sequences, enabling it to perform cross-species

inference.

Recent works have also explored the possibility of different

problem formulations andmeasurements from alternative exper-

imental techniques. DeepMEL43 constructed a model similar to

that of DanQ for the prediction of chromatin accessibility in mel-

anoma cell lines. DeepMEL was trained using melanoma omniA-

TAC-seq64 data (an improvement over plain ATAC-seq), and
Cell Reports Methods 3, 100384, January 23, 2023 9
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instead of predicting the binary chromatin accessibility per loca-

tion it predicts 24 co-accessible regions as identified by cis-

Topic.45 This better utilizes the co-regulatory mechanism of

accessible chromatin regions. BPNet,48 a 10-layer CNN with

dilated convolution and residual connections, trained on ChIP-

nexus49 (a high-resolution improvement of ChIP-seq) data of

four pluripotency TFs (Oct4, Sox2, Nanog, and Klf4), is able to

produce base-resolution binding affinity prediction to genomic

sequences of all four TFs in a multi-task fashion. BPNet is able

to discover interesting cooperativity between TF motifs located

within 1,000 bp regions, such as the Oct4-Sox2 motif and

Oct4-Oct4 motif, and the cooperation between the Nanog motif

and AT-rich motif in a periodic manner.

All of the above methods regard the genome as linear se-

quences per chromosome. However, the cellular genome does

have a three-dimensional (3D) structure. The 3D structure of

the genome is under extensive regulation and is able to affect

gene expression, DNA replication, and DNA repair. Several

approaches have been dedicated to deciphering the regulatory

code and grammar of the 3D structure of the genome from

genomic sequences. Akita50 is a deep-learning method that

can predict genome folding from the genomic sequences. After

training on Hi-C65 and Micro-C51 profiling data from five human

cell lines, one mouse cell line, and multiple mouse neuronal tis-

sues, Akita is able to infer the genome-folding map of each cell

type, which is a two-dimensional (2D) matrix representing pair-

wise contact between genomic regions. Akita utilizes a

Basenji-like architecture as its ‘‘trunk’’ for processing �1 Mb

genomic sequences. It then uses a ‘‘head’’ to transform the

one-dimensional (1D) genomic sequence representations into

2D maps. The mean squared error between the predicted 2D

map and experimental Hi-C or Micro-C data is used as the

training objective. Orca,56 a very recent improvement on Akita,

enables the prediction of the genome-folding map at multiple

resolutions. Orca uses a multi-resolution 1D-CNN genomic

sequence encoder which can take in 256 Mb, 32 Mb, or 1 Mb in-

puts and encodes them into 1D sequence representations. Orca

then uses a cascading 2D-CNN decoder to decode sequence

representations into 2D genome-folding maps. Using only the

Micro-C profiles of the two human cell lines (HFF and H1

hESC) that Akita has used, Orca produces genome-folding

map predictions at various scales, from 1 Mbp regions each

within one chromosome to 256 Mbp regions that cover multiple

chromosomes. Furthermore, Orca’s sequence encoder is simul-

taneously trained on the DHS and histonemodification profiles of

the two cell lines from ENCODE and Roadmap Epigenomics,

making it an integrative and multi-purpose model. In contrast

to the earlier works that have focused on sequence-based pre-

diction of genome-folding maps, a recent model, GraphReg,57

instead utilized the 3D structure of the genome for better predic-

tion of gene expression levels. GraphReg contains a set of two

models, Epi-GraphReg and Seq-GraphReg. Epi-GraphReg

infers tissue-agnostic gene expression levels based on epige-

netic and 3D genomic profiles, and Seq-GraphReg infers tis-

sue-aware gene expression levels based on genomic sequence

and 3D genomic profiles. Both Epi-GraphReg and Seq-

GraphReg utilize graph attention networks59 for modeling the

spatial interactions between genomic locations.
10 Cell Reports Methods 3, 100384, January 23, 2023
Transcriptomic-level applications
The transcriptome serves as a central stage for gene regulation.

The initiation of transcription requires the recognition of a pro-

moter sequence by an RNA polymerase, binding of transcription

factors to enhancers, and determination of a transcriptional start

site (TSS). Such a process can be extensively regulated to con-

trol the rate of gene expression, and, if a gene has multiple pro-

moters, the utilization of different promoters may produce RNA

transcripts with different 50 UTRs that will potentially have

different translational efficiency.66 RNA splicing is also a highly

regulated process and is a significant contributor to eukaryotic

transcriptome diversity.67 In eukaryotes, the possible usage of

multiple polyadenylation sites (PASs) produces mRNAs with

different 30 UTRs that may contain important regulatory ele-

ments.68 After the completion of the above process, the mRNA

molecule is transported out of the nucleus. RNA subcellular

localization controls the spatial distribution of the newly tran-

scribedmRNAs. Post-transcriptional mRNAsmay also be selec-

tively targeted by microRNAs (miRNAs), which are able to down-

regulate the expression of certain genes. The 50 UTR of mRNA

has an important effect on its translational efficiency, which

directly controls the rate of protein synthesis.

We summarize research works that use deep learning to

model each of the aforementioned processes in Table 2.

Although some of the ‘‘genomic-level’’ prediction methods in

the previous section may also have some transcriptomic-level

predictions, especially for the integrative functional genomic

models such as Basenji and Expecto, we focus here onmethods

that are dedicated to particular aspects of transcriptomic-level

regulation.

CNNProm69 is an early deep-learning-based method for pro-

moter sequence recognition. The model uses one to two layers

of CNN for the binary classification of sequences into pro-

moter/non-promoter sequences. Effectiveness has been

demonstrated in both prokaryotes (Escherichia coli and Bacillus

subtilis) and eukaryotes (human, mouse, and Arabidopsis). As a

successor to CNNProm, DeeReCT-PromID73 enlarged the size

of the input to 600 bp and enabled genome-wide scanning of

promoters. The authors pointed out that models for promoter

recognition that are trained on curated balanced datasets may

not be directly applicable for genome-wide scanning. This is

because the majority of genomic regions are negative examples

(non-promoters) and, therefore, the tolerability of the false-pos-

itive rate should be much lower. DeeReCT-PromID employed a

strategy for iteratively selecting hard negative samples to reduce

the false-positive rate of the model. DeeReCT-TSS further

improved on DeeReCT-PromID by inferring promoter usage in

different cell lines through both promoter sequences and RNA-

seq evidence. It demonstrated its functionality by training and

evaluating on ten FANTOM539 cell lines, using genomic

sequence and RNA-seq as input and matched CAGE-seq40

data as ground truth.

RNA splicing plays a critical role in transcriptomic-level regu-

lation. By producing transcripts with different combinations of

exons and introns, it contributes significantly to eukaryotic

transcriptomic diversity. Given the complexity of different pat-

terns of alternative splicing, early works on deep-learning-based

splicing prediction particularly focused on one alternative



Table 2. Transcriptomic-level deep-learning applications

Method name Year Main functionalities Datasets Model Species Tissue/cell types

Promoter/TSS:

CNNProm69 2017 promoter recognition

d EPD70

o human

omouse

o Arabidopsis

d RegulonDB71

o 839 E. coli

promoters

d DBTBS72

o 746 B. subtilis

promoters

d 1–2 layer CNN (250 bp

for eukaryotes and

85 bp input for pro-

karyotes)

human

mouse

Arabidopsis

E. coli

B. subtilis

Non-specific

DeeReCT-PromID73 2019 promoter recognition on

highly imbalanced

dataset

d 16,455 human pro-

moter sequences

from EPD

d two-branch CNN, one

branch with pooling

layer, the other without

pooling (600 bp input)

d Iteratively enriching

hard examples during

training

human non-specific

DeeReCT-TSS74 2021 promoter recognition

guided by RNA-seq d FANTOM539

o RNA-seq from 10

cell lines

o CAGE-seq identi-

fied TSS from 10

cell lines

d two-branch CNN

(1,001 bp input)

o one for sequence

and one RNA-seq

base coverage

human multiple (10 cell types)

Splicing:

Barash et al.75 2010 splicing prediction of

cassette exons d Microarray profile of

3,665 cassette exons

in 27 mouse tissues

from Fagnani et al.76

d 1,014-dim features

extracted from flank-

ing sequence of the

cassette exon

d a dedicated probabi-

listic model to estimate

(qinc;qexc;qncÞ from
microarray profiles

d a one-layer NN (1,014

dim input) to predict

the above probabilities

from features of flank-

ing sequence

mouse multiple (27 tissues)

(Continued on next page)
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Table 2. Continued

Method name Year Main functionalities Datasets Model Species Tissue/cell types

Leung et al.77 2014 splicing prediction of

cassette exons d RNA-seq profile of

11,019 cassette exons

in five mouse tissues

from Brawand et al.78

d 1,393-dim features

extracted from flank-

ing sequence of the

cassette exon

d MLP (1,393 dim input),

with indices of two

tissues to compare

mouse multiple (5 tissues)

Xiong et al.79 2015 splicing prediction of

cassette exons in

exon triplets

d Bodymap 2.0 (NCBI

accession GEO:

GSE30611)

o 10,689 cassette

exons

o 16 normal tissues

d 1,393-dim features

extracted from

flanking sequence of

the cassette exon

d MLP (1,393 dim input)

d use Bayesian MCMC

for learning without

overfitting

human multiple (16 tissues)

DARTS80 2019 splicing prediction of

cassette exons

guided by RNA-seq

d training: ENCODE8

d K562 and HepG2

shRNA RBP

knockdown datasets

d testing: Roadmap

Epigenomics31

RNA-seq data

d MLP (2,926 + 1,498 3

2 dim input)

o 2,926 cis sequence

features

o 1,498 3 2 RBP

expression levels

o BHT integration

and deep-learning

prediction, and

RNA-seq evidence

human K562, HepG2

(Continued on next page)
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Table 2. Continued

Method name Year Main functionalities Datasets Model Species Tissue/cell types

SpliceAI81 2019 Splice sites prediction

from pre-mRNA d GENCODE82 v24

isoforms

o train: 13,384

genes, 130,796

donor-acceptor

pairs

o test: 1,652 genes,

14,289 donor-

acceptor pairs

d GTEx10 (novel

isoforms)

o 67,012 splice

donors, 62,911

splice acceptors

d CNN with dilated

convolution62 and

residual block (5,000

nt input)

d dense classifica-

tion of (no splice

site, donor,

acceptor)

human non-specific

Pangolin83 2022 splice sites prediction

from pre-mRNA d reference transcripts

o GENCODE v34 for

human transcripts

o ENSEMBL84

release 100 for

rhesus monkey

transcripts

o GENCODE m25 for

mouse transcripts

o ENSEMBL release

101 for rat tran-

scripts

d RNA-seq data of the

four tissues (heart,

liver, brain, and testis)

of human, rhesus

monkey, mouse, and

rat from Cardoso-

Moreira et al.85

d CNN with dilated

convolution and

residual blocks

(15,000 nt input)

d predicts per-tissue

splicing event

human

rhesus monk

mouse

rat

multiple (4 tissues in

each species)
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Table 2. Continued

Method name Year Main functionalities Datasets Model Species Tissue/cell types

Polyadenylation:

Leung et al., 201886 2018 PAS quantification

(pairwise comparison) d dataset for PAS

reference

o PolyA_DB 287

o GENCODE

o APADB88

o Derti et al. (polyA-

seq data)89

o Lianoglou et al.90

(30-seq data)

d dataset for PAS

quantification

d Lianoglou

et al.90(30-seq data)

d two-branch CNN for

PAS pairwise compar-

ison

human multiple (7 tissue types)

DeeReCT-PolyA91 2019 PAS recognition

d Dragon human poly(A)

dataset92

o 14,740 sequences

for the 12 main hu-

man PAS motif

variants

d Omni human poly(A)

dataset93

o 18,786 positive

true PAS se-

quences for 12 hu-

man PAS motif

variants

d Xiao et al.94 30-READS
sequencing of mouse

fibroblast cells of

C57BL/6J (BL),

SPRET/EiJ (SP), and

their F1

d CNN with group

normalization95 (200 nt

input)

human

mouse

non-specific

(Continued on next page)
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Table 2. Continued

Method name Year Main functionalities Datasets Model Species Tissue/cell types

APARENT96 2019 PAS quantification

d 3 million APA

massively parallel

reporter assay from

13 libraries

o use 9 out of 13

libraries for

training, �2.4

million variants; the

other four are held

out entirely

d two-layer CNN (186 nt,

a length that all ran

domized regions of the

reporters can fit in)

d prediction of the

inclusion ratio of the

proximal PAS in the

reporter assay

d gradient-based

forward engineering

of PAS sequences

human non-specific

DeeReCT-APA97 2021 PAS quantification

d Xiao et al.94 30-READS
sequencing of mouse

fibroblast cells of

C57BL/6J (BL),

SPRET/EiJ (SP), and

their F1

d CNN + BiLSTM (448 nt

per each PAS, variable

PASs in each example)

d models the inter-

actions between

competing PAS

mouse (BL, SP, and

BLxSP F1 hybrid)

fibroblast

RNA subcellular localization:

RNATracker98 2019 subcellular localization

prediction d mRNA sequences

from Ensembl84 2017

release

d RNA secondary struc-

ture implied from

RNAplfold99

d mRNA subcellular

localization profiles

o CeFra-Seq data

from Benoit Bouvr-

ette et al., 2018100

d cytosol, nu-

clear, mem-

branes, insol-

uble

o APEX-RIP data

from Kaewsapsak

et al.101

d ER, mitochon-

drial, cytosol,

nuclear

d CNN + BiLSTM (�200

nt to more than 30,000

nt)

human HepG2 and HEK293T

cell lines
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Table 2. Continued

Method name Year Main functionalities Datasets Model Species Tissue/cell types

MicroRNA targets:

MiRTDL102 2015 microRNA targets prediction

d TarBase dataset103

o 1,297 positive

miRNA + mRNA

pairs and 309

negative pairs (hu-

man, mouse, and

rat)

o Dataset further

extended by a

constraint relaxing

method, 198,620

positive pairs, and

19,660 negative

pairs

d CNN prediction based

on 20 features of the

miRNA and mRNA pair

human

mouse

rat

non-specific

Translation:

Cuperus et al.104 2017 50 UTR translational

efficiency prediction d measurement of

489,348 50-nt-long 50

UTR of yeast in a

massively parallel

growth selection

experiment

d 3-layer CNN (>50 nt to

fit the randomized

region)

d forward engineering of

50 UTR sequences

yeast N/A

RNA-protein binding:

DeepBind17 2015 sequence-based RNA-

protein binding

prediction

d RNAcompete105

o 207 distinct RBPs

from 24 eukaryotes

d CNN (101 nt input)

multiple (24 eukaryotes) non-specific

NucleicNet106 2019 structure-based RNA-

protein binding

prediction

d 483 RNA-protein

complexes from

PDB107 and de-dupli

cated to 158 ribonu

cleoprotein structures

d CNN with ResNet-like

architecture

multiple non-specific
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splicing type: the cassette exons. For example, an early work of

Barash et al. developed a one-layer neural network for the pre-

diction of cassette exon differential usage across mouse tis-

sues.75 The network takes in a 1,014-dimensional vector con-

taining sequence features flanking the exon of interest and

outputs three-class classification scores for ‘‘increased usage,’’

‘‘decreased usage,’’ or ‘‘no change.’’ The model is trained on

microarray profiles of 3,665 cassette exons in 27 mouse tis-

sues.76 Leung et al. further enlarged the dataset to a total of

11,019 cassette exons in mouse and increased the dimension

of sequence features to 1,393 for tissue-specific splicing pattern

prediction.77 Using the same sequence features as Leung et al.,

Xiong et al. developed an MLP for the prediction of 10,689 hu-

man cassette exons.79 The model was trained on Bodymap

2.0 RNA-seq data (NCBI accession GEO: GSE30611) and used

a Bayesian MCMC procedure to reduce overfitting. Using the

predictive model, the researchers were able to examine muta-

tions that alter splicing in genes involved in several human ge-

netic diseases. DARTS80 provided an example of integrating

deep-learning-processed sequence features and RNA-binding

protein (RBP) expression levels with low-coverage RNA-seq

evidence for the differential usage analysis of cassette exons be-

tween conditions. DARTS integrates MLP-based deep learning

with the Bayesian hypothesis test (BHT) by asking its deep-

learning module to provide a prior distribution for its BHT mod-

ule. In this way, DARTS enables deep-learning-guided study of

alternative splicing even when the experimental RNA-seq data

are not of enough sequencing depth.

SpliceAI81 is the first deep-learning-based splice site predictor

for all splicing types. SpliceAI simulates the in vivo pre-mRNA

processing machinery and directly predicts splice sites from

raw pre-mRNA sequences. SpliceAI takes in long input (5,000

nt) to handle large chunks of pre-mRNA sequences and per-

forms three-class classification (no splice site, donor site, and

acceptor site) per each pre-mRNA location. SpliceAI also utilized

the dilated convolution62 and residual block108 for increased

receptive field of high-level neurons. Pangolin83 further extends

SpliceAI in a multi-task fashion for the detection of splice sites

in a total of four tissue types (heart, liver, brain, and testis) from

four species (human, rhesus monkey, mouse, and rat).

The termination of eukaryotic Pol II transcription in eukaryotic

cells requires cleavage at the 30 end of the transcript and an addi-

tion of a poly(A) tail, a process called polyadenylation. Similar to

promoters that determine TSSs, PASs determine transcription

termination sites. A gene may have multiple competing PASs,

and cells from different tissue types or conditions may preferen-

tially use each of them. Such alternative polyadenylation (APA)

could modify the 30 UTRs of transcripts and could strongly affect

mRNA stability109 and cellular localization,110 and is involved in

various human diseases. DeeReCT-PolyA91 is one of the first

deep-learning methods for recognizing PASs. Using a CNN

with group normalization95 to increase robustness, DeeReCT-

PolyA takes in 200 nt sequences and predicts whether they

contain a PAS or not. The model achieved state-of-the-art per-

formance and substantially outperformed non-deep-learning

methods on two human polyadenylation datasets, the Dragon

human poly(A) dataset92 and the Omni human poly(A) dataset,93

and one mouse polyadenylation dataset from Xiao et al.94
Instead of tackling the PAS recognition problem, Leung et al.

were the first to address the PAS quantification problem by

applying a two-branch CNN for pairwise comparison of

competing PAS of a gene.86 Leung et al. assembled a reference

of PASs in the human genome using four different reference

databases and used 30-seq data from Lianoglou et al.90 for quan-

tification. Instead of casting the PAS quantification problem into

pairwise comparison problems, DeeReCT-APA97 handles vari-

able numbers of PASs per gene using a combined CNN and

BiLSTM architecture. DeeReCT-APA is able to model the inter-

actions between competing PASs and achieves better perfor-

mance than the model from Leung et al.86 Instead of training

models only on endogenous PAS sequences, APARENT96

trained a two-layer CNN on 3 million synthesized massively par-

allel reporter assay (MPRA) sequences of APA. TheMPRA is able

to measure hundreds of thousands of synthesized PAS

sequences’ regulatory activities in parallel. APARENT’s CNN

was trained to predict the measured regulatory activity given

the PAS sequence. Using a gradient-based optimization of input

sequences, the APARENT model is able to engineer PAS

sequences to have desired levels of regulatory activity.

Transcriptomic-level regulation can also be carried out

through other post-transcriptional mechanisms. mRNA subcel-

lular localization controls gene expression both spatially (by

transporting mRNA into different subcellular structures) and

quantitatively (by modulating the accessibility of mRNA to ribo-

somes). RNATracker98 is a deep-learning tool that predicts

such localization patterns of mRNAs. Utilizing mRNA sequence

and RNA secondary structure predicted from RNAplfold,99

RNATracker is able to classifymRNAs into their plausible subcel-

lular localizations. The version of RNATracker trained on CeFra-

Seq data100 classifies mRNA localizations into cytosol,

nuclear, membranes, and insoluble, while the version trained

on APEX-RIP data101 classifies localizations into ER mitochon-

drial, cytosol, and nuclear. mRNAs can also be targeted with

miRNAs that could silence mRNA expression. MiRTDL102 is a

CNN-based tool that is able to predict potential miRNA-mRNA

interactions. The 50 UTR of an mRNA greatly affects ribosomal

translational efficiency and is under frequent regulation. Similar

to the motivation of the APARENT model for the prediction of

PAS strength, Cuperus et al. developed a 3-layer CNN to predict

50 UTR translational efficiency by training it on 489,348 synthe-

sized 50 UTRs in yeast.104 The translational efficiency of each

synthesized 50-nt-long 50 UTR was measured by a massively

parallel growth selection experiment and was used as the

CNN’s prediction target.

Under the hood of all the transcriptomic-level gene regulations

are complex interactions between RNA and various other types

of biomolecules. RNA-protein binding is certainly one of themost

important, asmost post-transcriptional regulations aremediated

through RBPs. Besides predicting DNA-protein binding,

DeepBind17 is also able to predict RNA-protein bindings. After

being trained on the RNAcompete assay data,105 it is able to pre-

dict the binding preference of an RNA molecule to 207 distinct

RBPs from 24 eukaryotes based on the RNA sequence.

NucleicNet106 pursued a path different from DeepBind. Instead

of performing sequence-based RNA-protein binding predic-

tions, it makes RBP-centric predictions based on their
Cell Reports Methods 3, 100384, January 23, 2023 17
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structures. Trained on 158 ribonucleoprotein structures from the

PDB,107 it is able to predict an RBP’s binding sites for RNAs as

well as each binding site’s preference of each type of RNA

constituents. Readers are referred to Wei et al.111 for a detailed

survey of deep-learning applications in RNA-protein binding

predictions.

Proteomic-level applications
After a protein is translated from its mRNA template, regulation

can take place at the proteomic level via a number of mecha-

nisms. Protein post-translational modifications (PTMs) contain

a family of such regulatory processes that covalently modify a

protein after it is translated. For example, the serine (Ser), threo-

nine (Thr), and tyrosine (Tyr) residues can be modified by phos-

phorylation, which plays an important role in intracellular signal

transduction. Furthermore, the lysine (Lys) residues can be

modified through ubiquitination, which can mark a protein for

degradation. Protein subcellular localization determines the

cellular compartments where a protein resides and exerts its

functions, which will substantially affect its function and

activities.

We summarize these proteomic-level deep-learning applica-

tions in Table 3 (upper half). Similarly, we highlight their function-

alities, training datasets, and model architectures to facilitate

future explorations in this area.

Deep-learning models have been developed for the prediction

of PTMs from protein sequences. DeepPhos112 is a densely con-

nected CNN architecture119 that predicts phosphorylation sites

from protein sequences. DeepPhos112 formulates three different

phosphorylation prediction tasks. The general prediction in-

volves predicting whether an amino acid position is a phosphor-

ylation site. The residual-specific prediction requires a model to

predict in which amino acid type phosphorylation occurs. The

kinase-specific prediction requires a model to predict which ki-

nase is responsible for the phosphorylation event. DeepUbi120

is a CNN architecture that predicts ubiquitination from protein

sequences, achieving an area under the curve of 0.9 in a total

of 176 species. MusiteDeep122–124 is a series of works for multi-

ple PTM type prediction. Its latest version uses an ensemble of

multi-layer CNN and Capsule Network125 that is able to handle

13 different PTM types. MusiteDeep updates its predictions for

UniProt protein sequences every 3 months, and its prediction

results are available at https://www.musite.net.

DeepLoc126 is a deep-learning-based prediction tool that is

able to infer protein subcellular localization from their sequence.

DeepLoc is designed as a combined CNN and LSTM architec-

ture. It uses attention-based decoding to identify sequence

regions with high predictive power. It organizes the ten subcellu-

lar locations in a hierarchical manner and uses hierarchical tree

classification likelihood to train the model. In this way, without

using information from homology sequences, it is able to achieve

78% accuracy for a total of ten subcellular locations.

Phenotypic-level applications in animal and plant
species
The aforementioned deep-learning applications in gene regula-

tion have been mainly at the microscopic level of biological pro-

cesses. However, bridging the gap between the genotype and
18 Cell Reports Methods 3, 100384, January 23, 2023
the phenotype represents one of the ultimate goals of gene regu-

lation studies. In this section, we summarize deep-learning

models that have been developed to assist in genotype-to-

phenotype and phenotype-to-genotype inferences in animal

and plant species (Table 3, lower half).

Following the development of DeepSEA, Zhou et al. further

developed DeepSEA-based models for the prediction of the

effect of non-coding variants on autism spectrum disorder

(ASD).128 In this work, two DeepSEA-based models were trained

to predict transcriptional and post-transcriptional regulatory

effects separately. The resulting predictions were summarized

into disease impact scores through training an LR model on

top of the model predictions using known disease-associated

mutations. Using the disease impact scores, it was then able

to prioritize disease-associated mutations observed in 1,790

ASD-affected families. DeepWAS129 introduces a deep-

learning-assisted genome-wide association study (GWAS) pipe-

line. DeepWAS utilizes the pre-trained DeepSEA model to

produce a list of candidate variants for a GWAS. In this way, it

reduces the number of candidates for GWAS and increased its

statistical power. The authors demonstrated its effectiveness

by improving three existing GWASs for multiple sclerosis,130

major depressive disorder,131 and body height.132

In plant species, deep learning has also been applied in multi-

ple plant phenotype prediction tasks. For example, DeepGP133

applied a CNN-based model for phenotype prediction in two

polyploid outcrossing species: strawberry and blueberry. Five

strawberry fruit quality traits were predicted for strawberry indi-

viduals based on microarray genotypes, and five blueberry fruit

quality traits were predicted for blueberry individuals based on

genotypes obtained from Rapid Genomics Capture-seq.136

Shook et al. studied the possibility of predicting crop yield based

on genotype and environmental factors. Using the Uni-form Soy-

bean Tests data,138 which contains soybean yields in United

States and Canada during 2003–2015, the authors separately

built LSTM and temporal attention139 models for soybean crop

yield prediction. At each time step, the model considers the

crop’s genotype and seven weather variables during its growth

period and forecasts the yield during harvest seasons. Such

deep-learning applications in plant phenotype prediction tasks

will provide valuable insights for plant breeding.

PROBLEMS AND LIMITATIONS OF CURRENT DEEP-
LEARNING APPLICATIONS

Challenges in training and interpreting deep-learning
models
In this section we discuss challenges that are common in the

applications of deep learning, especially those in model training

and model interpretation.

Deep-learning models are known to be difficult to train

because their high non-linearity makes the optimization of the

objective function difficult. Typically, deep-learning models are

trained using stochastic gradient descent (SGD), as it is an effi-

cient first-order optimization algorithm and its stochasticity

allows it to jump out from local minima.27 However, the size of

each gradient descent step (the ‘‘learning rate’’) can be difficult

to configure. A small learning rate can result in slow training

https://www.musite.net/


Table 3. Proteomic- and phenotype-level deep-learning applications

Method name Year Main functionalities Datasets Model Species

Post-translational modification (PTM):

DeepPhos112 2019 phosphorylation site

prediction (general/

residual-specific/

kinase-specific)

d phosphorylation sites

collection

o Phospho.ELM113

o Phosphosite-

Plus114

o HPRD115

o dbPTM116

o SysPTM117

d 12,810 protein

sequences

d de-duplication crite-

rion

o CD-HIT118

similarity %40%

d Densely Connected

CNN (DC-CNN)119

(21 aa input)

d prediction tasks

o general prediction

o residual-specific

prediction

o kinase-specific

prediction

human

DeepUbi120 2019 ubiquitination

prediction d PLMD v3.0121

o 25,103 proteins

o 53,999 positives

o 50,315 negatives

o CD-HIT similarity

% 30%

d CNN (31 aa input)

multiple (176 species)

MusiteDeep122–124 2017-2020 multiple PTM

prediction d UniProt13

o 13 PTM types used

in the final version

d de-duplication

criterion

o CD-HIT similarity

%40 or%50

d ensemble and boot

strapping of the

following two models

(33 aa input)

o multi-layer CNN

o Capsule

Network125

d prediction results

publicly available at

https://www.musite.

net.

multiple animal species

(Continued on next page)
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Table 3. Continued

Method name Year Main functionalities Datasets Model Species

Protein-subcellular localization:

DeepLoc126 2017 subcellular localization

prediction d UniProt release

2016_04

o R40 aa

o with nomore than 1

subcellular loca-

tion

o with experimental

support

o CD-HIT similarity

%30%

d Höglund et al., 2006127

d 10 subcellular loca-

tions in total

d CNN + LSTM (max.

1,000 aa input)

d attention-based de-

coding

d hierarchical tree clas-

sification and likeli-

hood

multiple eukaryotes

Genotype-to-phenotype inference in animal species:

Zhou et al.128 2019 prediction of the effect of

non-coding variants to

autism spectrum disorder

d Roadmap Epigenom

ics histone marks and

DNase I profiles

o 2,002 epigenetic

features

d ENCODE and

previously published

CLIP datasets

o 231 profiles for a

total of 82 RBPs

d The Simons Simplex

Collection of whole-

genome sequencing

data of 7,097 genomes

for 1,790 ASD-

affected families

d transcriptional regula-

tory effects model

o DeepSEA with

doubled convolu-

tion layers

o model prediction

expanded from the

original 919 epige-

netic targets to

2,002 targets

d post-transcriptional

regulatory effects

model

o similar architecture

as DeepSEA

o prediction of bind-

ing affinity of 82

unique RBPs

human

DeepWAS129 2020 using genomic deep-

learning model to

enhance genome-

wide association

studies

d KKNMS microarray

profiles for multiple

sclerosis (MS)130

d MDDC microarray

profiles for major

depressive disorder

(MDD)131

d KORA microarray pro

files for body height132

d using the pre-trained

DeepSEA model for

prioritizing variants

that affect genomic

functional units

d using the prioritized

variants to propose

candidate variants for

GWAS analysis

human

(Continued on next page)
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Table 3. Continued

Method name Year Main functionalities Datasets Model Species

Genotype-to-phenotype inference in plant species:

DeepGP133 2020 multiple phenotype

prediction in polyploid

outcrossing species

d five advanced selec-

tion trials of strawberry

(University of

Florida)134

o evaluation of five

yield and fruit

quality traits

d soluble solid

content

d average fruit

weight

d total market-

able yield

d early market-

able yield

d percentage of

culled fruit

o microarray geno-

typing of 1,233

individuals

d one cycle of blueberry

breeding program

(University of

Florida)135

o evaluation of yield

and fruit quality

traits

d firmness

d fruit size

d weight

d yield

d scar

o genotyping by

Rapid Genomics

Capture-seq136

d using both CNNs and

Bayesian penalized

linear regression for

phenotype prediction.

strawberry

blueberry

Shook et al.137 2021 crop yield prediction

based on genotype and

environmental factors

d Uni-form Soybean

Tests data138

o soybean yield in

USA and Canada

during 2003–2015

d LSTM and temporal

attention model

soybean
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Table 4. Common problems in deep learning and their solutions

Method name Year Features

Improvements to SGD optimization:

Adagrad141 2011 adaptive learning rate

RMSprop142 2013 adaptive learning rate

Adam140 2014 adaptive learning rate, momentum update

NAdam143 2016 adaptive learning rate, Nesterov momentum update

AdamW144 2017 adaptive learning rate, decoupled weight decay

RAdam145 2019 adaptive learning rate, momentum update

Tools for hyperparameter tuning:

Raytune146 2018 Tensorflow,147 Pytorch148

KerasTuner149 2019 Keras150

Model interpretation:

Example-based methods explain models using data points themselves

application examples: Alipanahi et al., Bogard et al.17,96

Perturbation-based methods application examples: Alipanahi et al., Avsec et al.17,48

Attribution-based methods application examples: Avsec et al., Janssens et al.48,151

Integrated gradients152 2017

SHAP153 2017

DeepLIFT154 2018

Captum155 2020

Model-based methods encourage model interpretability through model design

application examples: Ji et al., Zhou et al.19,41
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progress and becoming stuck in a local minimum; a high learning

rate will make the algorithm fail to converge. The direction of an

SGD update, i.e., the direction toward which the objective func-

tion decreases the fastest, could also alternate too rapidly,

making the optimization trajectory oscillate around a local

minimum.140

Therefore, several improvements to SGD have been made to

make the algorithm more efficient and stable, as summarized

in Table 4. Adagrad141 adaptively modulates the learning rate

for each model parameter based on its magnitude. RMSprop142

also adaptively modulates the learning rates, but it is based on

the exponential moving averages of the parameters’ magnitude.

Improvements to the direction of parameter update are also

available, such as momentum and Nesterov momentum.156

Adam140 introduces the momentum update to RMSprop and

has been effective in the optimization of large CNNs. More

recently, several successors to Adam have become more and

more popular, including NAdam143 (Adam with Nesterov mo-

mentum), AdamW144 (Adam with decoupled weight decay),

and RAdam145 (Adam with more stabilized adaptive learning

rate in the warm-up process). To boost model performance,

researchers are always encouraged to apply these algorithms

and their variants in real-world practice.

Another challenge in training deep-learning models concerns

hyperparameter selection. The selection of hyperparameters

can substantially affect training stability and model perfor-

mance. As the model grows larger, the space of hyperpara-

meter combinations increases exponentially. Therefore, it is

necessary to employ heuristic search strategies in hyperpara-

meter tuning. Techniques such as random search,157 coordi-

nate descent, and Bayesian optimization158 are common
22 Cell Reports Methods 3, 100384, January 23, 2023
choices in practice. To facilitate the hyperparameter tuning pro-

cess, software libraries with integrated hyperparameter selec-

tion algorithms such as Raytune146 and KerasTuner149 can be

applied to existing projects with minimal modifications to the

existing source code.

Another challenge of deep learning is the difficulty in its inter-

pretation. Unlike shallowmodels such as linear models, decision

trees, and SVMs, deep-learning models have complex hierarchi-

cal architectures and their hidden states cannot be interpreted in

easy-to-understand terminologies. However, existing deep-

learning studies in gene regulation have employed various

kinds of methods to improve model interpretability. We catego-

rize such methods into four general categories, which are

summarized in Table 4.

Example-based methods

For example-based methods, the deep-learning models are

explained by training or testing examples in the dataset. To inter-

pret a specific layer or a hidden state neuron, examples that

result in their high activation are selected (e.g., top 5% among

all examples). The commonality among those examples can be

used as an interpretation. For example, the subsequences that

result in high activation of a specific convolution filter can be

collapsed into position weight matrices (PFMs) and visualized

by sequence logos. In this way, the regulatory motifs that the

model is ‘‘looking at’’ can be revealed. This technique is

commonly used by sequence-based models, such as described

by Alipahani et al.17 and Bogard et al.96

Perturbation-based methods

Another way to interpret model predictions is based on perturba-

tion. This is done by modifying (‘‘perturbing’’) the model’s input

and inspecting the changes in the output. It is expected that
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the model’s prediction will substantially decrease if the most

discriminative part of the input example is perturbed. For

example, by performing in silico pointwise mutations for a

biological sequence, we can produce a so-called mutation

map of the sequence by asking the model to predict a score

for each of the mutated sequences. This method has been

systematically investigated by DeepBind to confirm the putative

sequence motifs that are recognized by its convolution filters.17

Attribution-based methods

In contrast to example-based and perturbation-based methods

which still treat the deep-learning model as a black box, attri-

bution-based methods open up the black box by attributing a

model’s intermediate network value to the model’s input.

Such methods compute an attribution score for each element

of the input. The magnitude of the score indicates the amount

of its contribution, and the sign of the score shows whether the

contribution is positive or negative. Saliency map159 is one the

simplest attribution-based methods. It is defined just as

the model’s gradients with respect to the input. In recent years

more theoretically guaranteed approaches have been devel-

oped, including Integrated Gradients,152 SHAP,153 and Deep-

LIFT.154 For instance, BPNet extensively utilized DeepLIFT

when inspecting the model’s binding affinity predictions to

the TFs. Attribution-based methods seem to have a higher

sensitivity than example-based methods. In the BPNet paper,

the researchers systematically discussed the complex

sequence motifs that could only be discovered by DeepLIFT

but not by PFMs, such as the helical periodicity patterns of

Nanog.48

Model-based methods

Instead of making post hoc interpretations of the model, it is

better to consider interpretability during the model’s develop-

ment. There are building blocks of deep-learning models that

are inherently interpretable, such as attention modules.23 Atten-

tion scores can provide the location of regions to which the

model is paying attention. Dividing models into different stages

and producing interpretable results at the end of each stage is

also a common strategy. For example, Expecto predicts gene

expression prediction in three stages.41 In the first stage, it trans-

forms genomics sequences into epigenomic features, which

consists of 2,002 genome-wide histone marks; in the second

stage, it aggregates epigenomic features produced in the

second step based on spatial closeness; in the third stage, it pre-

dicts gene expression level from the aggregated features. In this

way, the transparency at each stage provides interpretability for

the whole pipeline.

Limitations of existing deep-learning applications in
gene regulation
Apart from the aforementioned general problems of deep-

learning algorithms, there are limitations specific to gene regula-

tion that will potentially challenge their application potential.

The problem of overfitting

Deep-learning models are well known for the overfitting issue.

The apparent high performance on a benchmark dataset does

not always imply successful generalization to other unseen ex-

amples. This is particularly true for applications in gene regula-

tion, due to three problems that are not trivial to overcome.
1. The limitation of data volume in biological studies may

hindermachine-learningmodel development. Unlike fields

such as computer vision and natural language processing,

where it is easy to collect terabytes or even petabytes of

training data from the internet or from crowd-sourcing

platforms,160 biological data have to be generated from

biological experiments. If a particular regulatory mecha-

nism cannot be studied by an established experimental

technique that generates a large enough number of

training examples, it will be impossible to study them using

machine-learning methods. Even though such experi-

mental techniques are available, the unavailability of

such data may also arise from financial constraints or pri-

vacy concerns.

2. The biological and technical variations across experi-

mental conditions may limit the model’s generalization

performance. For example, in the Basenji paper, the au-

thors observed, on average, a Pearson correlation of

0.479 between biological replicates,38 even though they

are from the same consortium. It is therefore difficult to

tell whether a model with a high performance score is

generalizable to other examples or is simply overfitting to

those random variations.

3. The use of endogenous sequences does not always imply

themodel’s generalizability to unseen cases. Mostmodels

take in biological sequences as input for their prediction,

but most of them only use endogenous sequences for

training. For example, DeepSEA,30 Basset,34 and Ex-

pecto41 were trained solely on the human reference

genome GRCh37. It remains elusive how well those

models are generalizable to genetic variations that may

have a different ‘‘regulatory grammar’’ from those that

are in the observed endogenous sequences. Furthermore,

the number of such sequences pertinent to a particular

regulatory event may comprise only a tiny fraction of the

organism’s genome, transcriptome, or proteome. For

example, the promoter sequences that regulate TSS only

consist of genomic sequences at the beginning of each

gene. This could further limit the diversity of training

data. As we have introduced in previous sections, only

APARENT96 for polyadenylation and the Cuperus

et al.104 model for 50 UTR translation efficiency utilized

measurements of synthesized exogenous sequences

from MPRA data for model training and evaluation.

The limitation of sequence-only models

Most gene regulation is a concerted effect of both cis-acting

sequence motifs and trans-acting binding molecules (mainly

binding proteins) residing in a cellular environment. Most of the

aforementioned deep-learning models take nucleotide or amino

acid sequences containing only cis-acting information as input.

Some methods modeled the trans-acting effects implicitly by

making tissue-specific predictions. For example, DeepSEA,

Basset, and Basenji38 perform multi-task prediction across mul-

tiple tissue types, and in Leung et al.,78 the researchers trained

separate models for each tissue type. For some methods,

such trans-acting effects are ignored completely (e.g., in

CNNProm69 and APARENT96). For all those models with tis-

sue-specific predictions, the trans-acting environment is
Cell Reports Methods 3, 100384, January 23, 2023 23
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assumed to be static, and the models always produce the same

results for a tissue type even though gene regulation is dynamic

with respect to internal and external conditions. When prediction

in a new tissue type is needed, the model needs to be retrained

using experimental profiles coming from that tissue, which may

not always be available. The only model that explicitly models

trans-acting effects is DARTS,80 which considers the expression

levels of 1,498 RBPs for splicing prediction.

Not enough consideration of interactions among

regulatory events

The multiple layers of gene regulation do not happen indepen-

dently. A proteomic-level regulation of one protein may affect

the transcriptomic-level regulation of another gene. However,

most methods developed so far have only considered regulatory

events independently. Even for the multi-task models that pre-

dict multiple genomic features simultaneously, the interactions

between those predicted events are not explicitly taken into

consideration. DeeReCT-APA97 considers the interactions

among multiple PASs; however, the interaction with the regula-

tory events of other types, e.g., splicing, is beyond its reach.

NEW DEEP-LEARNING METHODS AND PERSPECTIVES

In the following sections, we discuss several promising new par-

adigms in deep learning that will potentially overcome the limita-

tions already described (Figure 3).We list relatedworks in Table 5

as examples for each newparadigm and hope that they can shed

light on new deep-learning-based gene regulation studies.

Pre-trained self-supervised models could alleviate the
problem of data insufficiency
In recent years, pre-trainedmodels have achieved great success

in processing and understanding the natural language. Pre-

trained Transformer models such as BERT162 and GPT207–209

perform self-supervised learning on massive corpora, aiming to

predict randomly masked tokens from their context (the

‘‘masked language modeling’’ task) or the next token given the

previous tokens (the ‘‘causal language modeling’’ task). The

pre-trained models then display strong transfer learning ability.

After fine-tuning on a very small amount of data from some

downstream tasks, the model achieves state-of-the-art perfor-

mance (Figure 3A).

Pre-trained models for biological sequences have been devel-

oped in parallel. For example, Rives et al.18 developed a protein

sequence model, ESM-1b, which is a 33-layer Transformer

architecture with 650 million parameters. ESM-1b performs

BERT-like masked language modeling and is trained on 250

million protein sequences from Uniref. 50,210 which contains

clusters from the UniProt Archive with 50% sequence similarity.

Taking the network representations from ESM-1b, downstream

classifiers trained on small datasets perform quite well on protein

secondary structure and protein contact map prediction.

DNABERT19 is a DNA sequence model based on a 12-layer

BERT-base162 Transformer architecture with 110 million param-

eters pre-trained on the k-mer representation of the human

genome for genomic sequence modeling. DNABERT is trained

with the masked language modeling task by tokenizing the

human genome into k-mers. The model showed similar or even
24 Cell Reports Methods 3, 100384, January 23, 2023
better performance on several sequence classification tasks

such as promoter recognition, TF binding site prediction, splice

site prediction, and functional genetic variants classification.

The model also showed cross-species transfer learning ability

through the prediction of mouse TF binding sites. Instead of per-

forming the pre-training task on one amino acid sequence only,

the MSA Transformer24 extended the Transformer model to

handle multiple sequence alignments (MSAs) of amino acid

sequences to better utilize contextual information both within se-

quences and across homologous sequences. The MSA Trans-

former showed even superior performance on downstream pro-

tein secondary structure prediction and protein contact map

prediction than ESM-1b.

Through a language modeling objective, the pre-trained

models can utilize a massive amount of unlabeled biological

sequence data that are not specific to one species or one predic-

tion task. In this way, it is able to discover regulatory grammars

across multiple genomic regions or from multiple species. It

will be of great interest to see whether such pre-trained models

are systematically beneficial to downstream prediction tasks of

gene regulation, especially when the size of the downstream

task datasets is not enough to train deep-learning models from

scratch.

Few-shot andmeta-learningmechanisms produce data-
efficient deep-learning models
Another trend in the deep-learning community to tackle the

problem of data insufficiency is to develop deep-learningmodels

that utilize data efficiently. In particular, ‘‘few-shot learning’’ is

aimed at solving a prediction task with only a few training exam-

ples (Figure 3B). This challenging problem is usually tacked by

‘‘meta-learning,’’ whereby a ‘‘meta-model’’ is trained that is

easily generalizable across a set of similar tasks. When it is

required to perform a specific task, it is able to quickly adapt

itself to it with a few provided training examples from the task.

Such methods have already been applied in the classification

of biological sequences. For example, the previously introduced

DeeReCT-TSS74 applied a gradient-based meta-learning algo-

rithm, Reptile,164 for the fast adaptation of the TSS prediction

model to a total of ten cell types. The authors discovered that us-

ing �20% of data from each cell type to pre-train a meta-model

and then adapt it to a specific cell type using the rest of the data

benefited model performance. MIMML165 is a newly proposed

meta-learning framework for bioactive peptide function predic-

tion. MIMML is based on the Prototypical Network,168 which per-

forms few-shot classification by measuring the distance from a

query example to a few exemplars of each class. MIMML is

able to perform few-shot prediction of a total of 16 peptide

functions. With the above successful applications, we expect

meta-learning to have a greater impact, especially on prediction

tasks, withmany related classes but only a few training examples

for each of them.

Incorporation of structural information benefits
modeling
We have previously pointed out the limitation of sequence-only

models for not explicitly considering trans-acting factors. At

the molecular level, such factors are constantly dependent on



Figure 3. New deep-learning paradigms for gene regulation studies

(A) Self-supervised pre-trained models.

(B) Few-shot and meta-learning models.

(C) Incorporation of structural information.

(D) Multi-omics models.

(E) Single-cell omics models.
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Table 5. New methods and perspectives

Method name Year Datasets Model Functionalities

Self-supervised pre-trained models:

ESM-1b Transformer18 2020 250 million protein sequences from

UniProt Archive (UniParc)161

collected by Uniref. 50129

Transformer (33 layers, 650M params) pre-train task: protein masked language

modeling with amino acid sequence

downstream tasks: contact map

prediction, secondary structure

prediction

DNABERT19 2021 k-mers of the human genome BERT-base162 (12 layers, 110M params) DNA masked language modeling;

downstream fine-tuning achieves

strong performance on: promoter

recognition, TF binding sites prediction,

splice sites prediction, functional

genetic variants classification, cross-

species transfer learning

MSA Transformer24 2021 260 million MSAs from UniProt

collected by UniClust30163
Transformer adapted to MSA (12 layers,

100M params)

protein masked language modeling with

MSA; downstream tasks: unsupervised

and supervised contact map prediction,

8-class secondary structure prediction

Few-shot/meta- learning:

DeeReCT-TSS74 2021 FANTOM539 Reptile algorithm164 for meta-learning the Reptile meta-learning algorithm

allows fast adaptation to new tissue

types

MIMML165 2022 starPepDB166

BIOPEP-UWM167

Prototypical Network168 for metric-

based meta-learning (few-shot learning)

mutual information maximization loss

few-shot bioactive peptide function

prediction

Incorporation of structural information:

NucleicNet106 2019 483 RNA-protein complexes

from the PDB107 and de-dup

licated to 158 ribonucleoprotein

structures

CNN with ResNet-like architecture structure-based RNA-protein binding

prediction

MaSIF169 2020 PDB geodesic convolutional neural

networks170
protein pocket classification (MaSIF-

ligand)

protein interface prediction (MaSIF-site)

protein-protein interaction (PPI) search

(MaSIF-search)

dMaSIF171 2021 PDB quasi-geodesic convolution on point

cloud representation of protein surfaces

protein interface prediction

PPI search

(Continued on next page)
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Table 5. Continued

Method name Year Datasets Model Functionalities

Multi-omics models:

MOMA172 2016 the study curated the dataset

‘‘Ecomics,’’ which has integrated data

of the transcriptome, proteome,

metabolome, fluxome, and phenome of

E. coli under different experimental

conditions (available from http://

prokaryomics.com)

combination of RNN-based deep

learning and LASSO regression

using a layer-by-layer approach, the

model predicts multi-omics quantities

(transcriptomic, proteomic,

metabolomic, fluxomic, and phenomic)

DSPN173 2018 the study curated the dataset resource

‘‘PsychENCODE,’’ which includes

comprehensive functional genomic data

(genotype, bulk transcriptome,

chromatin, and Hi-C profiles) of the

brain of 1,866 individuals

conditional deep Boltzmannmachine174 the model predicts brain phenotypes in

an interpretable and generative way and

is able to impute intermediate

‘‘molecular phenotypes’’

deepManReg175 2022 the Patch-seq176 multi-omics

transcriptomic and electrophysiological

data for neuron phenotype

classification177

DNN with manifold alignment178 multi-modal alignment of multi-omics

data

Chaudhary et al.179 2018 230 samples from TCGA with RNA-seq

data, microRNA-seq data, and DNA

methylation profiles

autoencoder-based dimensionality

reduction,180 feature selection, and

integration of multi-omics data

the multi-omics model is able to cluster

patients into different survival groups,

and survival-correlated autoencoder

features have verified predictive

performance on independent datasets

Utilizing single-cell profiles:

Pseudobulk level:

Cusanovich et al., 2018181 2018 scATAC-seq of 100,000 cells from 13

tissues of adult mice

Basset model trained to predict

chromatin accessibility in each of the 13

tissues

d prediction of cell-type-specific

chromatin accessibility based on

sci-ATAC-seq

discovery of cell-type-specific

accessible site sequence motifs

DeepFlyBrain151 2022 scATAC-seq profiling of 240,919 cells of

Drosophila whole brain

CNN + LSTM model used in DeepMEL prediction of co-accessible regions in

three cell subtypes: Kenyon cell, T

neurons, and glia

Single-cell level:

DeepCpG182 2017

d Smallwood et al.183 (mouse,

scBS-seq)

Hou et al.184 (human and mouse

scRRBS-seq)

CNN + bidirectional GRU imputation of methylation states at the

single-cell level

(Continued on next page)
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Table 5. Continued

Method name Year Datasets Model Functionalities

CNNC185 2019

d scRNA-seq profiles

o mouse scRNA-seq dataset186

d 43,261 expression profiles

from

d over 500 different scRNA-

seq studies

o mESC data (GEO: GSE65525)

d prediction targets datasets

o the GTRD database187 for

mESC ChIP-seq peak regions

o KEGG188 and Reactome

pathway189 data

CNN TF target gene prediction, disease-

related genes prediction, and causality

inference between genes

SCALE190 2019

d acute myeloid leukemia dataset

from191

d GM12878/HEK293T dataset

from192

d InSilico dataset192,193

o in silico mixture of scATAC-

seq experiments of six cell

lines

d mixture of mouse splenocyte da-

taset194

d P56 mouse forebrain dataset195

d breast tumor dataset196

o mixture of tumor epithelial

cells and tumor-infiltrating

immune cells

variational autoencoder197 with

Gaussian mixture model

clustering, batch effect removal, and

imputation of scATAC-seq data

scFAN198 2020

d ENCODE GM12878, H1-ESC,

K562 TF binding profiles

3-layer CNN inferring TF binding activity of scATAC-

seq using TF binding model pre-trained

on bulk data

scGNN199 2021

d four scRNA-seq datasets

o the Chung data (GEO:

GSE75688)

o the Klein data (GEO:

GSE65525)

o the Zeisel data (GEO:

GSE60361)

o the AD case data (GEO:

GSE138852)

GNN-based autoencoder clustering, scRNA-seq data imputation

(Continued on next page)
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the interactions between protein-protein interactions or

nucleic acid-protein interactions. Therefore, the accurate

modeling of trans-acting factors in gene regulation requires

the incorporation of structural information from the cis- and

trans-acting counterparts. Recent breakthroughs in de novo

protein structure prediction by AlphaFold2 have greatly

enriched our resource for protein structures.211 Prediction of

3D structures of the genome50,56 and secondary structures

of RNA has also experienced significant progress.212,213

Therefore, systematically incorporating structural information

for deep-learning models in gene regulation is closer to reality

than ever before (Figure 3C).

Recent works that perform deep learning on protein 3D

structures are able to inspire future works that aim to incorpo-

rate such information into deep-learning models. MaSIF169

enabled deep learning on protein surfaces. Using a geodesic

convolutional neural network,170 MaSIF is able to predict the

binding of common ligands to protein interfaces and search

for protein surfaces involved in PPIs. dMaSIF,214 as a succes-

sor to MaSIF, reduced the computational complexity of

MaSIF by replacing geodesic convolution with quasi-

geodesic convolution. Both methods produce deep repre-

sentations of a protein surface that can be easily reused by

other downstream deep-learning predictors. They could

serve as a starting point for incorporating structural informa-

tion in proteomic-level regulation prediction tasks, where

protein-protein interaction is abundant. NucleicNet,106 intro-

duced in the section ‘‘transcriptomic-level applications,’’

could serve as an example for transcriptomic-level models

that aim to factor in such structural information. NucleicNet

represents the binding protein’s 3D structure as a 3D grid

with physicochemical properties. Using a CNN with residual

connections,108 it is able to predict binding specificities of

each type of the constituents of RNA. It will be of great interest

as to whether such structural information and binding prefer-

ence of RBPs, encoded in the deep representations of

NucleicNet, can be explicitly utilized in modeling transcrip-

tomic-level gene regulation in order to make such kinds of

predictions more reliable and convincing.

Development of multi-omics models
Biologists usually rely onmultiple experimental techniques for

the confirmation of certain discoveries. Utilizing multiple data

sources will also provide more evidence for predictive deep-

learning models (Figure 3D). There are already existing

methods that integrate multi-omics data from multiple sour-

ces for clinical predictive modeling. For example, Chaudhary

et al.179 developed a multi-omics deep-learning model for the

prediction of patient survival in hepatocellular carcinoma. The

model is trained using 230 samples from The Cancer Genome

Atlas (TCGA) with DNA methylation profiles, RNA-seq data,

and microRNA-seq data. Their strategy to aggregate multi-

omics data was to use autoencoder-based dimensionality

reduction180 and feature selection in each data type. The

selected features are then concatenated for downstream

multi-omics clustering and discriminative prediction.

The developments of multi-omics models can be further

inspired by multi-modal machine learning.215 Processing
Cell Reports Methods 3, 100384, January 23, 2023 29
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multi-omics data is essentially dealing with data coming from

multiplemodalities. The concept ofmulti-modal fusion strategies

for multi-modal inputs, e.g., early fusion versus late fusion, is also

applicable to multi-omics models. Early fusion, i.e., data integra-

tion at the networks’ early processing stage, may favor two

omics profiles that are similar in the technology of measurement,

and late fusion, i.e., data integration at the networks’ late pro-

cessing stage, may favor two omics profiles that are similar in

their subject of measurement but with very different technolo-

gies. Production of the so-called joint representations215 by

mapping data points from multiple omics data sources into a

same semantic space may also be beneficial for unified down-

stream network processing and analysis. DeepManReg175

shows itself as such an example. Designed as a DNN with a

manifold alignment objective, it performs multi-modal alignment

of transcriptomic and electrophysiological data in a Patch-seq

multi-omics experiment176 and has been effective in neuron

phenotype classification.

Although most existing deep-learning methods independently

consider each regulatory event, gene regulation itself is a holistic

cellular process. Future deep-learning models for gene regula-

tionmodeling should not only integratemulti-omics data sources

as input but also consider the relationship between multi-omics

quantities in their output (Figure 3D). For this, the Multi-Omics

Model and Analytics (MOMA)172 provided such an example in

E. coli. The MOMA model predicts multi-omics quantities of E.

coli given their different growth conditions. Using RNN-based

deep learning and LASSO regression, MOMA adopts a layer-

by-layer approach to predict transcriptomic, proteomic, metab-

olomic, fluxomic, and phenomic quantities one after another,

specifically taking into consideration the effect on an omics

quantity by the quantities from previous omics layers. Similarly,

the Deep Structured Phenotype Network (DSPN)173 predicts

brain phenotypes from multiple functional genomic data modal-

ities based on a hierarchical conditional deep Boltzmann ma-

chine (DBM) architecture.174 The DBMs are also arranged in a

layer-by-layer fashion by first predicting the ‘‘intermediate mo-

lecular phenotypes’’ and then the brain phenotypes. This makes

DSPN a generative model that is more interpretable than the

common discriminative models in deep learning. These could

shed light on future gene regulation modeling works that aim to

simulate the underlying biological processes more realistically.

Utilization of single-cell profiles
Nearly all of the aforementioned deep-learning models for gene

regulation have been trained on bulk sequencing profiles. In

recent years, single-cell omics profiling technologies have

improved substantially. This includes single-cell RNA-seq

(scRNA-seq) for gene expression level profiling, single-cell

ATAC-seq (scATAC-seq)192,216 for chromatin accessibility

profiling, single-cell bisulfite sequencing (scBS-seq),183 and

single-cell reduced representation bisulfite sequencing

(scRRBS-seq)217 for methylation profiling, single-cell ChIP-seq

(scChIP-seq)218 for protein-DNA binding profiling, and Smart-

seq219 for full-length transcriptome profiling. Therefore, more

and more data at single-cell resolution have accumulated. Sin-

gle-cell profiles distinguish themselves from bulk profiles in their

high dimensionality, high dropout rate (sparsity), and low
30 Cell Reports Methods 3, 100384, January 23, 2023
sequencing quality and coverage. This not only introduces new

challenges in data processing, analysis, and interpretation but

also for the development of gene regulation models that uti-

lize them.

Current deep-learning-based gene regulation models gener-

ally utilize single-cell profiles in two different ways (Figure 3E).

The first operates at the pseudobulk level. Themodel aggregates

single-cell measurements within each cell cluster into one rofile.

The model then utilizes the aggregated pseudobulk profiles in

the same way as bulk omics profiles. Despite information loss

during the aggregation process, the utilization of pseudobulk

profiles still has an advantage over real bulk omics profiles

because they represent measurements from pure cell types

without interference from others. As an example, Cusanovich

et al. performed scATAC-seq on �100,000 somatic cells from

adult mice.181 The researchers developed a model based on

the architecture of Basset to predict chromatin accessibility in

each of the 85 identified cell types in a multi-task fashion. The

model was trained on the aggregated pseudobulk profiles within

each cell cluster. Very recently Janssens et al. developed the

DeepFlyBrain model, based on DeepMEL, for the prediction of

chromatin co-accessible regions in the Drosophila brain.151

Similarly, the authors trained the DeepFlyBrain model on the

aggregated pseudobulk profiles of three cell types, namely

Kenyon cell, T neurons, and glia.

The other way is to utilize single-cell profiles at the genuine

single-cell level. As single-cell profiles are well known for their

sparsity, much research has been dedicated to applying deep

learning for the imputation and inference on single-cell profiles.

For example, DeepCpG,182 trained on the scBS-seq and

scRRBS-seq profiles of multiple human and mouse tissues,

uses a CNN + bidirectional GRU architecture and can impute

methylation status for low-coverage single-cell methylation pro-

files. scGNN199 is a GNN-based autoencoder model for scRNA-

seq data enhancement. scGNN utilizes multiple GNN and

autoencoders that are effective in producing relationship-aware

cell embeddings. The authors demonstrated that scGNN was

effective in improving cell clustering and data imputation among

four independent publicly available scRNA-seq datasets.

SCALE190 is a variational autoencoder and Gaussian mixture

model-based deep-learning model that performs imputation

for low-coverage scATAC-seq profiles. Additionally, SCALE’s

latent embedding of each cell was shown to be effective in scA-

TAC-seq cell clustering and batch effect removal. scBasset is a

recent model for scATAC-seq profile imputation. It improves

upon SCALE by guiding imputation with the underlying genomic

sequence. This is achieved by processing the genomic

sequences into deep representations with a 6-layer CNN and

incorporating them at the imputation step. scFAN198 is able to

infer single-cell TF binding activity from scATAC-seq profiles.

scFAN utilizes a sequence-based TF binding model that was

trained on bulk TF binding profiles. scFAN then infers the per-

cell TF binding activity by asking the model to predict the TF

binding affinity to the chromatin-accessible regions of each cell

as reported by the scATAC-seq profile.

Deep learning has also been effective in making inferences on

gene regulation networks using scRNA-seq data. For example,

CNNC185 infers the causality between two genes, e.g., gene A
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and gene B, in a gene regulatory network. CNNC uses a CNN to

analyze the 2D expression level histogram between the two

genes as if it were a 2D image and predicts whether there is an

interaction between gene A and gene B, and, if so, whether

gene A causally influences gene B or vice versa. scTeni-

foldKnk202 is a model for the in silico prediction of the gene

knockout (KO) effects based on scRNA-seq data and gene reg-

ulatory networks. scTenifoldKnk first constructs a gene regulato-

ry network based on a given scRNA-seq dataset. It then

performs an in silico KO experiment by modifying the edges of

the target genes in the network. scTenifoldKnk then performs a

quasi-manifold alignment of the network before and after KO

to predict its influence on the gene expression levels of all genes

in the network.

As more and more single-cell profiling techniques are

emerging and maturing, it is expected that more deep-learning

applications for the imputation and inference in those data

modalities are going to emerge. With the accumulation of evi-

dence provided by single-cell gene regulation profiles, future

gene regulation models will certainly better capture the gene

regulation heterogeneity among cells.
Conclusions
To conclude, deep learning has certainly had successful applica-

tions in gene regulation. Being a data-driven approach, deep-

learning-based methods have successfully modeled regulatory

processes at various omics levels with high accuracy. With

further improvement in deep-learning paradigms, ongoing

development in omics technologies, and accumulation of omics

data, deep-learning models are expected to be more accurate

and make breakthroughs by providing biologically insightful pre-

dictions. We believe that in the foreseeable future, deep-

learning-based predictive models for gene regulation will

become indispensable tools that will aid biologists in solving

real-world biological problems.
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21. Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On

the properties of neural machine translation: encoder-decoder ap-

proaches. Preprint at arXiv. https://doi.org/10.48550/arXiv.1409.1259.

22. Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory.

Neural Comput. 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735.

23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, q., and Polosukhin, I. (2017). Attention is all you need. Pre-

print at arXiv. https://doi.org/10.48550/arXiv.1706.03762.

24. Rao, R.M., Liu, J., Verkuil, R., Meier, J., Canny, J., Abbeel, P., Sercu, T.,

and Rives, A. (2021). MSA transformer. In Proceedings of the 38th Inter-

national Conference on Machine Learning, M. Marina and Z. Tong,

eds. (PMLR).

25. Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and Telenti,

A. (2019). A primer on deep learning in genomics. Nat. Genet. 51, 12–18.

26. Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., and Gao, X. (2019). Deep

learning in bioinformatics: introduction, application, and perspective in

the big data era. Methods 166, 4–21.

27. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT

press).

28. Weirauch, M.T., Cote, A., Norel, R., Annala, M., Zhao, Y., Riley, T.R.,

Saez-Rodriguez, J., Cokelaer, T., Vedenko, A., Talukder, S., et al.

(2013). Evaluation of methods for modeling transcription factor sequence

specificity. Nat. Biotechnol. 31, 126–134.

29. Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K.R., Rastas, P.,

Morgunova, E., Enge, M., Taipale, M., Wei, G., et al. (2013). DNA-binding

specificities of human transcription factors. Cell 152, 327–339. https://

doi.org/10.1016/j.cell.2012.12.009.

30. Zhou, J., and Troyanskaya, O.G. (2015). Predicting effects of noncoding

variants with deep learning–based sequence model. Nat. Methods 12,

931–934. https://doi.org/10.1038/nmeth.3547.

31. Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren, B., Milo-

savljevic, A., Meissner, A., Kellis, M., Marra, M.A., Beaudet, A.L., Ecker,

J.R., et al. (2010). The NIH roadmap epigenomics mapping consortium.

Nat. Biotechnol. 28, 1045–1048.

32. Stenson, P.D., Ball, E.V., Mort, M., Phillips, A.D., Shiel, J.A., Thomas,

N.S.T., Abeysinghe, S., Krawczak, M., and Cooper, D.N. (2003). Human

gene mutation database (HGMD�): 2003 update. Hum. Mutat. 21,

577–581.

33. Leslie, R., O’Donnell, C.J., and Johnson, A.D. (2014). GRASP: analysis of

genotype–phenotype results from 1390 genome-wide association

studies and corresponding open access database. Bioinformatics 30,

i185–i194. https://doi.org/10.1093/bioinformatics/btu273.

34. Kelley, D.R., Snoek, J., and Rinn, J.L. (2016). Basset: learning the regu-

latory code of the accessible genomewith deep convolutional neural net-

works. Genome Res. 26, 990–999.

35. Quang, D., and Xie, X. (2016). DanQ: a hybrid convolutional and recurrent

deep neural network for quantifying the function of DNA sequences. Nu-

cleic Acids Res. 44, e107. https://doi.org/10.1093/nar/gkw226.

36. Zeng, H., and Gifford, D.K. (2017). Predicting the impact of non-coding

variants on DNA methylation. Nucleic Acids Res. 45, e99. https://doi.

org/10.1093/nar/gkx177.

37. Wang, M., Tai, C., E, W., and Wei, L. (2018). DeFine: deep convolutional

neural networks accurately quantify intensities of transcription factor-

DNA binding and facilitate evaluation of functional non-coding variants.

Nucleic Acids Res. 46, e69. https://doi.org/10.1093/nar/gky215.

38. Kelley, D.R., Reshef, Y.A., Bileschi, M., Belanger, D., McLean, C.Y., and

Snoek, J. (2018). Sequential regulatory activity prediction across chro-

mosomes with convolutional neural networks. Genome Res. 28,

739–750.

39. Noguchi, S., Arakawa, T., Fukuda, S., Furuno, M., Hasegawa, A., Hori, F.,

Ishikawa-Kato, S., Kaida, K., Kaiho, A., Kanamori-Katayama, M., et al.
32 Cell Reports Methods 3, 100384, January 23, 2023
(2017). FANTOM5 CAGE profiles of human and mouse samples. Sci.

Data 4, 170112. https://doi.org/10.1038/sdata.2017.112.

40. Itoh, M., Kojima, M., Nagao-Sato, S., Saijo, E., Lassmann, T., Kanamori-

Katayama, M., Kaiho, A., Lizio, M., Kawaji, H., Carninci, P., et al. (2012).

Automated workflow for preparation of cDNA for cap analysis of gene

expression on a single molecule sequencer. PLoS One 7, e30809.

https://doi.org/10.1371/journal.pone.0030809.

41. Zhou, J., Theesfeld, C.L., Yao, K., Chen, K.M., Wong, A.K., and Troyan-

skaya, O.G. (2018). Deep learning sequence-based ab initio prediction of

variant effects on expression and disease risk. Nat. Genet. 50, 1171–

1179. https://doi.org/10.1038/s41588-018-0160-6.

42. Agarwal, V., and Shendure, J. (2020). Predicting mRNA abundance

directly from genomic sequence using deep convolutional neural net-

works. Cell Rep. 31, 107663. https://doi.org/10.1016/j.celrep.2020.

107663.

43. Minnoye, L., Taskiran, I.I., Mauduit, D., Fazio, M., Van Aerschot, L., Hul-

selmans, G., Christiaens, V., Makhzami, S., Seltenhammer, M., Karras,

P., et al. (2020). Cross-species analysis of enhancer logic using deep

learning. Genome Res. 30, 1815–1834.

44. Wouters, J., Kalender-Atak, Z., Minnoye, L., Spanier, K.I., De Waege-
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