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Abstract

Antibody leads must fulfill multiple desirable properties to be clinical candidates. Primarily due to 
the low throughput in the experimental procedure, the need for such multi-property optimization 
causes the bottleneck in preclinical antibody discovery and development, because addressing one 
issue usually causes another. We developed a reinforcement learning (RL) method, named AB-Gen, 
for antibody library design using a generative pre-trained Transformer (GPT) as the policy network 
of the RL agent. We showed that this model can learn the antibody space of heavy chain 
complementarity determining region 3 (CDRH3) and generate sequences with similar property 
distributions. Besides, when using human epidermal growth factor receptor-2 (HER2) as the target, 
the agent model of AB-Gen was able to generate novel CDRH3 sequences that fulfill multi-property 
constraints. 509 generated sequences were able to pass all property filters and three highly conserved 
residues were identified. The importance of these residues was further demonstrated by molecular 
dynamics simulations, which consolidated that the agent model was capable of grasping important 
information in this complex optimization task. Overall, the AB-Gen method is able to design novel 
antibody sequences with an improved success rate than the traditional propose-then-filter approach. 
It has the potential to be used in practical antibody design, thus empowering the antibody discovery 
and development process. 

KEYWORDS: Protein design; Transformer; Reinforcement learning; Generative modeling; Multi-
objective optimization
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Introduction

Antibodies have become an increasingly important therapeutic for many diseases, because of their 
capabilities to bind to antigens with high specificity and affinity [1,2]. To discover antibodies with 
high specificity, hybridomas and phage display methods are typically used, which can discover 
potential lead candidates. However, the lead optimization process usually takes up the majority of 
the preclinical discovery and development cycle, where the lead candidates discovered are further 
optimized with multiple properties, including pharmacokinetics, solubility, viscosity, expression 
levels, and immunogenicity [3–5]. This is largely due to the low throughput in the late-stage 
development, and addressing one issue usually causes another [6].

In recent years, especially after the success of AlphaFold2 [7], de novo protein design has gained 
attention and several methods have been developed to design proteins with certain structures [8,9]. 
For example, RFDesign was proposed to design proteins with specific functions, such as 
immunogen, enzyme activity, and protein–protein interaction [10]. These methods are guided by 
structure-based constraints and targeted to design novel protein sequences with certain structure 
patterns, thus new functions [8,10,11]. Though promising, these methods are not designed to 
optimize properties that have no clear associations with structures, such as solubility and viscosity, 
thus not suitable for the multi-property optimization task in antibody design.

In silico antibody design is an emergent topic with notable progress. A few deep learning 
methods have been proposed to generate novel antibody sequences. An auto-regressive dilated 
convolutional neural network was trained on ~ 1.2 million natural nanobody sequences, and used to 
generate complementarity determining region 3 (CDR3) sequences [12]. Their designed library was 
filtered from the model-generated sequences and showed better expression than a 1000-fold larger 
synthetic library. It demonstrated the power of generative models in learning the space of antibodies 
that can be expressed. Another work pre-trained a long short-term memory (LSTM) [13] on 70,000 
heavy chain complementarity determining region 3 (CDRH3) sequences and fine-tuned on 
molecular docking datasets or with experimentally validated predictors to generate high affinity 
sequences against antigens [6,14]. Besides, Transformers [15] were also used to design antibody 
sequences. One work [16] used a Transformer decoder [17] to generate CDRH3 sequences. Their 
model was trained on 558 M antibody variable region sequences, conditioning on chain type and 
species-of-origin, and demonstrated a better design than random baselines. Another work [18] used 
a Transformer encoder to separate human and non-human sequences. This model can separate 
human and non-human sequences with high accuracy, thus guiding the humanization of antibody 
sequences. While these studies showed the power of generative models to learn useful information 
on antibody sequences, none of them aimed at solving the multi-property optimization problem in 
antibody design.

In this study, we developed a reinforcement learning (RL) framework, called AB-Gen, to design 
antibody libraries that fulfill multi-property constraints. Specifically, we used AB-Gen to explore 
the CDRH3 sequence space, which contains the highest diversity in antibodies. More than 75 million 
CDRH3 sequences were obtained from the Observed Antibody Space (OAS) database [19] to train 
a prior model. A generative pre-trained Transformer (GPT) was used as the policy network of the 
agent and the prior model was used to initiate it. We trained AB-Gen with two different settings to 
illustrate the improvement from the multi-property optimization. In the first setting, an agent, named 
Agent_HER2, was trained to only optimize human epidermal growth factor receptor-2 (HER2) 
specificity [6] and in the second setting, another agent, named Agent_MPO, was trained to optimize 
multiple desirable properties, including HER2 specificity, major histocompatibility complex (MHC) 
II affinity [20], clearance, and viscosity [4]. From the results, we showed that the prior model could 
learn the sequence space of CDRH3s and generate sequences with similar property distributions to 
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the training dataset. Besides, both Agent_HER2 and Agent_MPO were capable of generating novel 
CDRH3 sequences that fulfilled the predefined property constraints, but Agent_MPO achieved an 
apparently higher success rate in generating sequences of desirable properties. Finally, an antibody 
library targeting HER2 was designed and highly conserved residues among the generated sequences 
were found. The importance of these residues was further validated through molecular dynamics 
(MD) simulations. In Herceptin, these residues were found to form hydrogen bonds between HER2 
during interaction, suggesting that the agent model was able to grasp important information in this 
complex optimization task. Altogether, these results demonstrate that AB-Gen can be used to design 
CDRH3 sequences with multi-property constraints, thus providing a new tool for antibody library 
design.

Method

Dataset

In order to train our prior model to learn the CDRH3 sequence space, the OAS sequences [19] were 
retrieved on Jan 14, 2022, which were numbered with the international ImMunoGeneTics 
information system (IMGT) numbering schema [21]. The heavy chain data were processed with 
Pandas [22] to obtain the CDRH3 sequences. The unique CDRH3 sequences of paired and unpaired 
heavy chain sequences were collected and sequences containing “X” were removed. As the CDRH3 
of template antibody Herceptin has a length of 13, the obtained CDRH3 sequences were filtered 
with length ranging from 12 to 14 to reduce the computational cost and ensure a similar length. A 
final dataset of 75,204,905 unique sequences were used, with 90% for training and 10% for testing.

Model architecture

An overview of the entire workflow is illustrated in Figure 1. A Transformer decoder prior model 
was trained on the CDRH3 sequences from OAS [19]. This prior model was used to initiate the 
agent. The agent model was trained through a RL process, with the scoring functions and prior 
likelihoods used to calculate the reward. The final agent model was used to generate CDRH3 
sequences with desirable properties.

The prior network

A Transformer decoder model, GPT-2 [17], was chosen as the prior model, which the agent shared 
the same. CDRH3 sequences were tokenized by assigning each amino acid with a unique integer 
based on alphabetical ordering, together with start, end, and padding tokens. Tokenized sequences 
were used to train the model on a next token prediction task.

The prior GPT model we used was a mini version of GPT-2, with only ~ 6 M parameters. The 
architecture of the model is shown in the middle of Figure 1. The model comprises eight decoder 
blocks, input embedding and positional embedding before the blocks, and a linear layer with layer 
normalization before output with a softmax function. Each block contains a masked multi-head self-
attention layer and a fully connected feed-forward layer, with residual connections. Layer 
normalization is conducted before the two layers to normalize the inputs, which are vectors of size 
256.
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The masked multi-head self-attention layer is the core of the GPT model. It is composed of eight 
scaled dot-product attention functions and facilitates the model to capture key information in a 
sequence. In the dot-product calculation, a query vector  is used to calculate a dot product with the 𝑄
key vector  and then divided by the key vector length . The resulting product value is passed 𝐾 𝑑𝑘
into a softmax function to get the attention weights, which is dot-producted with a value vector  to 𝑉
get the final attention. As shown in Equation (1) [15].

(1)𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

𝑑𝑘)𝑉

To train the prior model, cross-entropy loss was used with the AdamW optimizer. The model 
was trained for ten epochs on the training dataset with a learning rate of 1 × 10−4. During generation, 
a start token is fed to the model to predict the next token. The generated token is concatenated with 
previous tokens to predict the next, until the end token is obtained, or a maximum length is reached.

Training the RL agent

The process to generate CDRH3s with desirable properties was framed as a RL problem, as shown 
in the right of Figure 1. In this problem, the state is the current amino acid sequence sampled, and 
the action is to sample the next amino acid. It is an episodic task, because the scores can only be 
evaluated when the full sequence is sampled and evaluated. The GPT model as described in the 
previous subsection was used as the policy network of the agent, and reward functions were 
calculated from the likelihoods of CDRH3 sequences and the predicted properties.

The REINVENT approach, which has been proven successful for chemical generation [23], was 
adapted for CDRH3 generation. The loss function used to train the agent model is defined as in 
Equations (2) and (3). First, a CDRH3 sequence A is sampled from the agent model with log 
likelihood . Then the CDRH3 sequence is passed to the prior model to calculate prior log 𝑝(𝐴)𝑎𝑔𝑒𝑛𝑡
log likelihoods , and evaluated with scoring functions of properties to get the score log 𝑝(𝐴)𝑝𝑟𝑖𝑜𝑟 𝑆

. The score is added to the prior log likelihoods with a coefficient  to get the augmented log (𝐴) 𝜎
likelihood , as shown in Equation (2). Here, prior log likelihood is added to preserve the log 𝑝(𝐴)𝑎𝑢𝑔
rules learnt from CDRH3 sequences.

(2)log 𝑝(𝐴)𝑎𝑢𝑔 = log 𝑝(𝐴)𝑝𝑟𝑖𝑜𝑟 + σ𝑆(𝐴)

Then the loss function is calculated by the squared error between the augmented log likelihood 
and agent log likelihood, as shown in Equation (3).

(3)𝐿𝑜𝑠𝑠 = [log 𝑝(𝐴)𝑎𝑢𝑔 ― log 𝑝(𝐴)𝑎𝑔𝑒𝑛𝑡]2

To train the models, a workstation with two A100 graphics processing units (GPUs) and 112 
central processing units (CPUs) was used. Each A100 GPU has 40 G memory. 

The scoring functions for the agent

To optimize the generation of CDRH3 sequences towards desirable properties, several important 
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properties were chosen to guide the agent during generation, including specificity, viscosity, 
clearance, and immunogenicity. In order to calculate the scores of these properties, Herceptin was 
used as the template to graft the generated CDRH3 sequences on.

For specificity, HER2 was chosen as the target, and an experimentally validated model [6] was 
used to get a specificity score. This model is developed based on the most comprehensive CDRH3 
dataset for HER2 specificity and has confirmed to be useful in discovering HER2-specific variants 
in the experiments. It only takes 10 amino acids of the CDRH3 sequences as inputs, so Herceptin 
template was used to complete the other three residues. Sequences with length other than 13 are 
assigned with a HER2 specificity score of zero. The score is within the range of [0, 1].

Viscosity and clearance were evaluated by the net charge and hydrophobicity index [4]. 
Increasing antibody variable fragment net charge (FvNetCharge) and increasing variable fragment 
charge symmetry parameter (FvCSP) were reported to be associated with decreased viscosity. 
However, for clearance, the optimal FvNetCharge is between 0 and 6.2, and the optimal 
hydrophobicity index sum (HISum) of light chain complementarity determining region 1 (CDRL1), 
light chain complementarity determining region 3 (CDRL3) and CDRH3 is less than four [4]. The 
FvNetCharge, FvCSP, and HISum were calculated following a previous study [4,6]. The net charges 
of variable regions of the heavy chain (VH) and variable regions of light chain (VL) at the pH of 
5.5 were calculated by summing over charged amino acids and the Henderson–Hasselbalch equation. 
FvNetCharge was obtained as the sum of VH and VL net charges, while FvCSP was obtained as the 
product of the two charges. VH sequences were obtained by grafting the generated CDRH3 
sequences to Herceptin. VL, CDRL1, CDRL3 sequences of Herceptin template were used to 
compute these scores. To transform the scores into [0, 1], FvCSP score was transformed with 
sigmoid function, as shown in Equation (4), and FvNetCharge and HISum scores were transformed 
with a double sigmoid function, as shown in Equation (5). In these equations,  and  are defined as 𝑙 ℎ
low and high scores, and , , and  are the parameters.𝑘 𝑘1 𝑘2

(4)𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥, 𝑙, ℎ) =  
1

1 +  10
 ―  𝑘 ∗  

𝑥 ―  
ℎ +  𝑙

2
ℎ ―  𝑙  

(5)𝑑_s𝑖𝑔𝑚𝑜𝑖𝑑(𝑥, 𝑙, ℎ) =  
1

1 +  10 ―  𝑘1 ∗  (𝑥 ―   𝑙) ―
1

1 +  10 ―  𝑘2 ∗  (𝑥 ―   ℎ) 

Immunogenicity was evaluated by binding affinity to MHC II. The NetMHCIIpan [20] was used 
to scan a reference set of 34 human leukocyte antigen (HLA) alleles as done previously [6]. A 
percentage rank is obtained for each 15-mer peptide, which is the rank of the predicted affinity of 
the peptide to an allele, relative to a set of random nature peptides. A higher percentage rank of a 
15-mer indicates a lower likelihood to bind with MHC II, thus a lower predicted immunogenicity. 
Each generated CDRH3 sequence had a length of 13 and was padded with 10 amino acids on both 
sides to obtain 19 all possible 15-mers of the sequence. The minimum percentage rank (minPR) was 
computed for each CDRH3 sequence by calculating all 19 15-mers across all 34 HLA alleles. The 
resulting minPR, where larger values mean less immunogenicity, was transformed into the range of 
[0, 1] using sigmoid function as shown in Equation (4).

Evaluation metrics

We defined three basic metrics and one metric in a constrained scenario to assess the models in our 
study. Details of the metrics are described below.
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Basic metrics

The three basic metrics were used, including uniqueness, novelty, and diversity. The set of input 
CDRH3 sequences to be evaluated is denoted by G, the training set is denoted by T, and n is the 
total number of sequences in G. Uniqueness is represented as the ratio of the unique sequences 
among 10,000 input sequences; novelty is represented as the ratio of the unique sequences in G but 
not in T, whereas diversity is represented as the average Levenshtein distance dist(x,y) of any pair 
of input CDRH3 sequences x,y, as defined in Equation (6).

(6)𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =
2

𝑛(𝑛 ― 1)∑𝑥,𝑦 ∈ 𝐺𝑑𝑖𝑠𝑡(𝑥,𝑦)

Metric in a constrained scenario

To evaluate the set of input sequences in a constrained scenario, one additional metric, success rate 
was defined. To define the metric, a CDRH3 sequence was defined to be successful by fulfilling the 
following thresholds on selected properties. These include (1) HER2 specificity > 0.70, where 0.70 
is chosen as threshold to increase the confidence of specificity [6]; (2) FvNetCharge < 6.2, where 
6.2 is the threshold for a good clearance [4]; (3) FvCSP > 6.61, where 6.61 is the FvCSP of 
Herceptin and greater FvCSP is associated with decreased viscosity [4]; (4) HISum within the range 
of [0, 4], where [0, 4] is the optimal range for good clearance [4]; and (5) minPR > 2.51, where 2.51 
is the minPR of Herceptin and a larger minPR indicates a lower likelihood to bind with MHC II, 
thus a lower predicted immunogenicity [20]. Then success rate is defined as the number of 
successful sequences over that of the input sequences.

Evaluation settings

Task 1: learning the rules of CDRH3 sequences

The prior model was trained on ~ 67 million CDRH3 sequences from OAS with a length range from 
twelve to fourteen. To evaluate the capability of the prior model to learn the rules of CDRH3 
sequences, 10,000 sequences were generated from the prior model or randomly sampled from the 
training dataset, respectively. The property distributions of these two sets of sequences were 
calculated. Furthermore, the pairwise sequence distance distributions among the training set, among 
the prior-generated set, and between the two sets were also calculated.

Task 2: generating CDRH3s with high specificity to HER2

An agent model was trained with HER2 specificity as the target to generate CDRH3 sequences with 
high specificity to HER2. Because the HER2 specificity model [6] only accepts 10 amino acids 
among the CDRH3 sequences with length of 13, the starting “SR” and ending “Y” residues in 
Herceptin CDRH3 framework were fixed during generation and not used during specificity 
evaluation. During agent training, the maximum length to generate was set as 13 and 64 CDRH3 
sequences were generated during each step. The probability score from the HER2 specificity model 
was used as the scoring function in Equation (2) to calculate the augmented likelihoods of the 
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generated sequences. The agent was trained for 3000 steps, and the model trained after the final step 
was named Agent_HER2.

Task 3: generating CDRH3s with multiple desirable properties

Another agent model was trained with multiple property predictors to generate CDRH3 sequences 
fulfilling multi-property constraints. Similar to the Agent_HER2 model, the maximum sequence 
length in generation was set to 13; Herceptin template was used to constrain the starting to be “SR” 
and ending to be “Y” in the generated CDRH3 sequences; 64 sequences were generated during each 
training step; and the model was trained for 3000 steps. The main difference is that multiple property 
scores were combined as the final scoring function for the augmented likelihood calculation, 
including HER2 specificity, FvNetCharge, FvCSP, HISum, and the minPR of predicted MHC II 
affinity (MHC II minPR). These scores were combined with weighted sum, where HER2 specificity 
had a higher weight of 3/7 and other four scores were assigned with an equal weight of 1/7 
respectively. The agent model trained after the last step was named Agent_MPO for comparison.

Design synthetic library to HER2

To design a synthetic library to HER2, 10,000 sequences were sampled from Agent_MPO. 
Successful sequences were obtained and further filtered with CamSol (version 2.2) solubility scores 
[24] greater or equal to 0.42, which was the score for Herceptin. A final set of 509 CDRH3 
sequences were obtained as the potential candidates for MD simulation.

To show the common patterns of the sequences, a sequence logo of the 509 CDRH3 sequences 
was generated. The 509 sequences were aligned with ClustalW [25] and the result of this alignment 
was used as the input to WebLogo [26] to create the sequence logo.

MD simulation analysis of designed antibodies

To elucidate the patterns discovered in the WebLogo of the 509 generated CDRH3 sequences, the 
interaction mechanism of Herceptin with HER2 was examined. The structural model was created 
based on the crystal structure of human HER2–Herceptin complex [Protein Data Bank (PDB) ID: 
1N8Z) [27] and the missing residues in HER2 were modeled by structural alignment to the crystal 
structure of HER2 (PDB ID: 6J71) [28]. The HER2–Herceptin antigen-binding fragment (Fab) 
complex was then solvated in a dodecahedron box and counter ions were inserted to ensure the 
whole system to be neutral. The whole system contains ~ 330,000 atoms and five replicas of 50 ns 
canonical ensemble (T = 298 K) simulations were performed (see File S1 Section 4 for details of 
model construction and MD simulations).

In the MD simulations, the Amber ff14SB force field [29] was used to simulate the protein and 
ions, and the first 10 ns in each MD trajectory was removed before performing the subsequent 
structural analysis. All the simulations were performed with GROMACS 5.0 [30].
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Results

Learning observed CDRH3 sequence space with the prior model

In order to train our prior model to learn the CDRH3 sequence space, the unique CDRH3s of paired 
and unpaired heavy chain sequences were collected from the OAS database [19]. More than 75 
million unique CDRH3 sequences were obtained, and a prior model, GPT, was trained on these 
sequences to learn the CDRH3 space. The hyper-parameters were analyzed to find the suitable 
values (see File S1 Section 3 for details).

To evaluate the capability of the prior model to learn the CDRH3 space, the property 
distributions of generated samples were analyzed. 10,000 sequences were sampled from the prior 
model for evaluation and 10,000 sequences randomly sampled from the training dataset were used 
as the baseline. The properties include viscosity, clearance, immunogenicity, and sequence 
similarity. Viscosity and clearance were evaluated by analyzing FvNetCharge, FvCSP, and HISum. 
Immunogenicity was evaluated by analyzing the affinity to MHC II. The MHC II minPR to 34 HLA 
alleles was used as the metric for distribution analysis. More explanation of FvNetCharge, FvCSP, 
HISum, and MHC II minPR are provided in Methods. Sequence similarity was evaluated with 
pairwise distance and cross-pairwise distance. Pairwise distance is the Levenshtein distance of a 
pair of sequences in the dataset to evaluate, and cross-pairwise distance is the Levenshtein distance 
of a pair of sequences with one from the prior and the other from the baseline.

The distribution curves are shown in Figure 2. The prior and the baseline sequences showed 
similar distributions on these properties. Large portions of overlaps between the property 
distributions of the prior and baseline are observed in Figure 2A–E. Besides, the distribution of the 
cross-pairwise distance is very similar to the pairwise distance distributions in Figure 2F, which 
indicates that the distance of a pair of sequences from two different sources is not clearly different 
from that of a pair of sequences from a single source. Based on these observations, we believe that 
the GPT prior model has learned a good distribution of the CDRH3 space.

From an in-depth look at the property values of these two sets of samples, we found that some 
of the baseline and prior-generated sequences have desirable values on some of the properties, 
including FvNetCharge of less than 6.2, FvCSP of less than 6.61, HISum in the range of [0, 4], and 
MHC II minPR greater than 2.51. However, none sequences from both sets of samples have an 
HER2 specificity score greater than 0.70, where 0.70 is chosen as threshold to increase the 
confidence of HER2 specificity [6], leading to zero success rates of the two models, as shown in 
Table 1.

Furthermore, three basic metrics, including uniqueness, novelty, and diversity, were calculated 
to evaluate the generative capability of the models. The definitions of the three metrics are described 
in “Basic metrics” and the metric values of the prior and baseline are shown in Table 1. The prior-
generated sequences achieve very high uniqueness (1.000) and novelty (0.999), while the baseline 
sequences also have high uniqueness (1.000) but zero novelty, because all sequences are sampled 
from the training dataset and none of them is novel. Both the prior and the baseline have high metric 
values for diversity (9.754 and 9.930, respectively). Together, this result shows that the prior model 
generates CDRH3 sequences with high uniqueness and diversity, and it is able to generate novel 
sequences that are not observed in the training dataset.
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Generating CDRH3s with desired properties through RL

To discover antibodies with high specificity to a target is typically the first and foremost step in 
antibody development [3]. However, none of the baseline sequences, which were assumed to 
represent the observed CDRH3 space, showed good specificity to HER2 (with 0.70 used as the 
threshold). Similarly, none of the prior sequences, which were generated by a GPT model trained 
on the CDRH3 dataset, had good HER2 specificity.

To optimize the CDRH3 generation and generate sequences with desirable properties targeting 
HER2, we utilized a RL framework. Details of the framework can be found on Methods. During the 
RL process, the likelihood of generating CDRH3s possessing good desirable properties was 
increased and that of generating CDRH3s with poor properties was decreased. The prior likelihood 
was also used to give feedback to the agent to preserve information of the CDRH3 space learned by 
the prior model. The hyper-parameter tuning was conducted as described in File S1 Section 3.

To evaluate the capability of the agent to generate CDRH3 sequences with good desirable 
properties, two agent models were trained. One agent model, named Agent_HER2, was trained with 
only HER2 specificity as the scoring function and the other agent model, named Agent_MPO, was 
trained with multiple property predictors combined as the scoring function to fulfill multiple 
requirements in the design of antibody libraries.

The performance of the resulting models is shown in Figure 3 and Figure 4. Figure 3 shows the 
property distributions of sequences sampled from the prior model, the Agent_HER2 model, and the 
Agent_MPO model. In Figure 3, we see that averaged HER2 specificity of prior sequences is zero, 
while those of sequences from Agent_HER2 or Agent_MPO models have clearly better HER2 
specificity. Agent_HER2 generated sequences with higher averaged HER2 specificity than 
Agent_MPO. However, the success rate, which considers the ratio of sequences fulfilled multi-
property constraints, of Agent_HER2 (0.038) is much less than that of Agent_MPO (0.266), as 
shown in Table 1. This shows that Agent_MPO is better at generating sequences that simultaneously 
fulfill multi-property requirements.

The higher success rate of the Agent_MPO model is mainly contributed by optimized 
FvNetCharge and MHC II minPR, as shown in Figure 4. The sequences generated by the 
Agent_MPO model have a focused range of the FvNetCharge score, which are better in fulfilling 
the constraints (FvNetCharge <= 6.20). The MHC II minPR scores of sequences generated by 
Agent_MPO are drastically shifted towards the desired range (minPR >= 2.51). In general, Figures 
3 and 4 show that the agents can generate CDRH3 sequences with apparently better properties than 
the prior model, and Agent_MPO, which optimized multiple properties, achieves a clearly better 
success rate than Agent_HER2, which solely optimized HER2 specificity.

Designing a novel antibody library targeting HER2

In our study, we want to employ the power of AB-Gen to design novel antibody libraries, which 
have the potential to be used for practical antibody discovery. Ten thousand sequences were 
generated by the Agent_MPO. These sequences were filtered with the previous property constraints 
in success rate calculation and with CamSol solubility scores [24] greater or equal to 0.42 (0.42 is 
the score for Herceptin). A final set of 509 CDRH3 sequences were obtained as the potential library 
for further analysis.

The edit distances of the designed sequences to the wild-type Herceptin were analyzed as shown 
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in Figure S1. The maximum edit distance was eight, the minimum was two, and a median edit 
distance of six was found. Because the total editing range has a length of ten, a median of around 
60% of the sequences were modified. This indicates that AB-Gen can design novel sequences, which 
are not intuitive to design.

To further analyze the common patterns, the sequence logo of 509 generated CDRH3 sequences 
was created. The sequences were aligned using ClustalW [25] and the alignment was used to create 
the sequence logo by WebLogo [26]. The resulting sequence logo is shown in Figure 5. The 
beginning two residues of the CDRH3, i.e., S97 and R98, and the tailing residue Y109 were fixed 
during generation, thus serving as the reference. From the sequence logo, we found that G103, Y105, 
and D108 on the heavy chain of Herceptin are highly conserved among these sequences, which 
suggested that these protein residues could play essential roles in the binding between Herceptin 
and HER2.

To gain insight into how Herceptin binds with HER2 at the molecular level and potentially 
explain the functions of the conserved residues, we performed MD simulations for the HER2–
Herceptin Fab system and examined the molecular interactions in the binding region at the atomic 
resolution. In the MD simulations, we observed that Herceptin is mainly interacting with HER2 
through hydrogen bonds. Specifically, the backbone oxygen atom of Herceptin residue G103 could 
form hydrogen bond with the side chain of HER2 residue K593 (hydrogen bonding probability = 
14.7% ± 1.6%), and the side chain of Herceptin residue D108 is hydrogen bonded with the hydroxyl 
group of HER2 residue Y588 (hydrogen bonding probability = 39.5% ± 1.9%). Moreover, the side 
chain of Herceptin residue Y105 could form hydrogen bonds with both the backbone oxygen atom 
(31.5% ± 3.2%) as well as the side chain oxygen atoms (38.7% ± 7.7%) of HER2 residue D570. 
These observations have not only consolidated the observation from sequence logos that G103, 
Y105, and D108 are important to bridge HER2 and Herceptin, but also suggested that hydrogen 
bonds contribute to the interactions between HER2 and Herceptin Fab in the binding region.

Discussion

In this study, we used GPT in combination with RL to design novel antibody sequences, and 
obtained a clearly high success rate in generating antibody CDRH3 sequences with multiple 
desirable properties. To our knowledge, this is the first attempt to combine GPT with RL to optimize 
the design of new antibody sequences towards multiple desirable properties. A readily available tool, 
named AB-Gen, was developed for antibody library design, and a set of CDRH3 sequences were 
designed as a potential library against HER2.

We focused on designing antibody CDRH3s to fulfill multi-property constraints, but this method 
can also be used to design large proteins. As the HER2 specificity model used in our study is only 
focusing on evaluating the CDRH3 regions which has a length of 13 in IMGT numbering schema, 
we focused on designing CDRH3 sequences and the other parts of antibodies were the same as 
Herceptin. To apply this method to other proteins, two main inputs are needed; one is the homology 
sequences to pre-train the prior model, and another is the property predictor to feedback to the agent. 
The homology sequences can be found from sequence databases through homology search and the 
main constraint to apply this method is to calculate the scores for desirable properties to guide the 
RL framework, such as affinity/specificity, activity, solubility, and stability. More specifically, the 
HER2 specificity model used in this study has a good accuracy, however, is rare for other targets. 
For targets with no such datasets, antibody–antigen docking platforms provide alternative solutions 
[31,32]. Besides, we believe that with the accumulation of data, deep learning-based methods would 
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eventually give good property predictors, thus also have the potential to close this gap.

Compared to the previous method, our multi-parameter optimization achieved an apparent 
improvement on the success rate. The previous method obtained the antibody CDRH3 library 
sequences through random proposing followed by filtering approach [6] and had a relatively low hit 
rate (1.10 × 10−4), which was the ratio of selected sequences over generated sequences. Besides, this 
proposing and filtering process had high time and computational costs. However, in this study, our 
AB-Gen method can efficiently explore the antibody space and design CDRH3 sequences to fulfill 
predefined property constraints. The Agent_MPO model was able to generate sequences that 
achieve a hit rate of (5.09 × 10−2). We believe that if all the properties used as the filters could be 
added in the scoring functions, the hit rate can be further improved.

During agent training, generated sequences have to be scored using offline tools to provide the 
feedback to the agent. The barrier to add some commonly considered properties as constraints for 
generation is that no such offline tools are available to calculate or predict these properties. For 
example, CamSol was proposed for antibody solubility prediction and is one of the commonly used 
predictors for solubility [24,33]. But no offline tool is provided, which is required to optimize this 
property in our workflow. An offline solubility predictor would be highly appreciated if the CamSol 
developers or other peer researchers can provide one.

Efficiency of predictive models is the core factor that influences the speed of design in our 
method. During our experiments, we found that NetMHCIIpan [20] was the bottleneck in training 
the Agent_MPO models. The inefficient prediction of MHC II affinity potentially due to the 
methodology used for NetMHCIIpan, which splits a sequence into 15-mer peptides to calculate 
affinity against multiple HLAs. We expect new methods to be developed to improve the efficiency 
of such predictions.

In summary, we proposed a novel framework combining GPT and deep RL to design new 
CDRH3 sequences that can be potential experimental libraries in experimental studies. Our results 
illustrate the power of artificial intelligence to design antibody libraries. With more predictive tools 
available to compute antibody properties, this RL framework would hold great potential to be used 
for antibody library design, thus empowering the antibody discovery and development process.

Code availability

The source code of AB-Gen is freely available at Zenodo [34] and BioCode 
(https://ngdc.cncb.ac.cn/biocode/tools/BT007341). The filtered datasets to train the prior model, the 
pre-trained models, and the designed antibody sequences are also available in the Zenodo 
repositories.

CRediT author statement

Xiaopeng Xu: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, 
Project Administration, Resources, Software, Visualization, Writing - original draft, Writing - 
review & editing. Tiantian Xu: Data Curation, Formal Analysis, Methodology, Visualization, 
Writing - original draft. Juexiao Zhou: Conceptualization, Software, Visualization, Writing - 
review & editing. Xingyu Liao: Methodology, Resources, Writing - review & editing. Ruochi 
Zhang: Methodology, Resources, Writing - review & editing. Yu Wang: Methodology, Resources, 

https://ngdc.cncb.ac.cn/biocode/tools/BT007341


14

Writing - review & editing. Lu Zhang: Conceptualization, Supervision, Writing - original draft, 
Writing - review & editing. Xin Gao: Conceptualization, Funding Acquisition, Supervision, 
Writing - review & editing. All authors have read and approved the final manuscript.

Competing interests

Ruochi Zhang and Yu Wang are current employees of Syneron Technology. All the other authors 
have declared no competing interests.

Acknowledgments

This work was supported in part by the Office of Research Administration (ORA), King Abdullah 
University of Science and Technology (KAUST), Saudi Arabia, under Grant FCC/1/1976-44-01. 
We acknowledge the constructive comments from the reviewers to improve the quality of this work.

ORCID

0000-0003-2414-7851 (Xiaopeng Xu)

0000-0001-5905-9216 (Tiantian Xu)

0000-0002-6739-6236 (Juexiao Zhou)

0000-0002-0061-1317 (Xingyu Liao)

0000-0001-6541-4050 (Ruochi Zhang)

0000-0002-3526-9494 (Yu Wang)

0000-0002-8640-1301 (Lu Zhang)

0000-0002-7108-3574 (Xin Gao)

References

[1] Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem 
2009;57:1–5.

[2] Liu W, Wu C. A mini-review and perspective on multicyclic peptide mimics of antibodies. 
Chin Chem Lett 2018;29:1063–6.

[3] Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to 
improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug 
Discov 2010;9:203–14.



15

[4] Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, et al. In silico selection of 
therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl 
Acad Sci U S A 2014;111:18601–6.

[5] Xu L, Tu Y, Li J, Zhang W, Wang Z, Zhuang C, et al. Structure-based optimizations of a 
necroptosis inhibitor (SZM594) as novel protective agents of acute lung injury. Chin Chem Lett 
2022;33:2545–9.

[6] Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, et al. Optimization of 
therapeutic antibodies by predicting antigen specificity from antibody sequence via deep 
learning. Nat Biomed Eng 2021;5:600–12.

[7] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate 
protein structure prediction with AlphaFold. Nature 2021;596:583–9. 

[8] Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature 
2016;537:320–7. 

[9] Pan X, Kortemme T. Recent advances in de novo protein design: principles, methods, and 
applications. J Biol Chem 2021;296:100558.

[10]Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, et al. Scaffolding protein 
functional sites using deep learning. Science 2022;377:387–94.

[11]Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchinnikov S, Hao J, et al. De 
novo protein design by deep network hallucination. Nature 2021;600:547–52. 

[12]Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, et al. Protein design 
and variant prediction using autoregressive generative models. Nat Commun 2021;12:2403. 

[13]Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735–80.

[14]Akbar R, Robert PA, Weber CR, Widrich M, Frank R, Pavlović  M, et al. In silico proof of 
principle of machine learning-based antibody design at unconstrained scale. MAbs 
2022;14:2031482. 

[15]Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you 
need. Proc 31st Int Conf Neural Inf Proc Syst 2017:6000–10.

[16]Shuai RW, Ruffolo JA, Gray JJ. Generative language modeling for antibody design. bioRxiv 
2021; https://doi.org/10.1101/2021.12.13.472419.

[17]Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised 
multitask learners. OpenAI 2019;1:9.

[18]Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L, Svozil D, et al. Biophi: a platform 
for antibody design, humanization, and humanness evaluation based on natural antibody 
repertoires and deep learning. MAbs 2022;14:2020203.

[19]Olsen TH, Boyles F, Deane CM. Observed antibody space: a diverse database of cleaned, 
annotated, and translated unpaired and paired antibody sequences. Protein Sci 2022;31:141–6. 



16

[20]Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: 
improved predictions of MHC antigen presentation by concurrent motif deconvolution and 
integration of MS MHC eluted ligand data. Nucleic Acids Res 2020;48:W449–54.

[21]Lefranc MP, Pommié  C, Ruiz M, Giudicelli V, Foulquier E, Truong L, et al. IMGT unique 
numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like 
domains. Dev Comp Immunol 2003;27:55–77

[22]McKinney W. pandas: a foundational python library for data analysis and statistics. Python 
High Perform Sci Comput 2011;14:9.

[23]Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de novo design through deep 
reinforcement learning. J Cheminform 2017;9:48.

[24]Sormanni P, Aprile FA, Vendruscolo M. The CamSol method of rational design of protein 
mutants with enhanced solubility. J Mol Biol 2015;427:478–90.

[25]Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and 
ClustalX. Curr Protoc Bioinformatics 2002;Chapter 2:Unit 2.3.

[26]Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome 
Res 2004;14:1188–90. 

[27]Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of 
the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 
2003;421:756–60.

[28]Wang Z, Cheng L, Guo G, Cheng B, Hu S, Zhang H, et al. Structural insight into a matured 
humanized monoclonal antibody HuA21 against HER2-overexpressing cancer cells. Acta 
Crystallogr D Struct Biol 2019;75:554–63. 

[29]Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: 
improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem 
Theory Comput 2015;11:3696–713. 

[30]Abraham MJ, Murtola T, Schulz R, Pa’ll S, Smith JC, Hess B, et al. GROMACS: high 
performance molecular simulations through multi-level parallelism from laptops to 
supercomputers. SoftwareX 2015;1:19–25.

[31]Robert PA, Akbar R, Frank R, Pavlović M, Widrich M, Snapkov I, et al. Unconstrained 
generation of synthetic antibody-antigen structures to guide machine learning methodology for 
real-world antibody specificity prediction. Nat Comput Sci 2022;2:845–65

[32]Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S, et al. Computational 
approaches to therapeutic antibody design: established methods and emerging trends. Brief 
Bioinform 2020;21:1549–67

[33]Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, et al. Progress and 
challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. 
MAbs 2022;14:2008790.

[34]Xu X, Xu T, Zhou J, Liao X, Zhang R, Wang Y, et al. Antibody library design with Transformer 

https://pubmed.ncbi.nlm.nih.gov/18792934/
https://pubmed.ncbi.nlm.nih.gov/18792934/


17

and deep reinforcement learning ― source code and data (v1.1). Zenodo 2023; 
https://doi.org/10.5281/zenodo.7657016.

https://doi.org/10.5281/zenodo.7657016


1

Figure legends

Figure 1  The workflow of AB-Gen

More than 75 million CDRH3 sequences were obtained from the OAS database to train a prior 
model. This prior model was used to initiate the RL agent. The architecture of the prior model 
is shown in the middle and the agent model shares the same. The pipeline of the RL process is 
shown in the right bottom. In each step, the agent model was used to generate CDRH3 
sequences; the generated sequences were scored with property predictors to get property scores 
and evaluated with the prior model to get prior likelihoods; the property scores and prior 
likelihoods were combined together to calculate augmented likelihoods, which were used as 
the feedback to the agent. The agent model was able to generate sequences that fulfill multi-
property constraints after the training steps. CDRH3, heavy chain complementarity 
determining region 3; OAS, Observed Antibody Space; RL, reinforcement learning; VH, 
variable regions of the heavy chain; VL, variable regions of light chain.

Figure 2  Property distribution of the prior-generated CDRH3 sequences and baseline 
sequences 

A. Distributions of FvNetCharge, with the higher the better for good viscosity and less than 
6.2 needed for good clearance. B. Distributions of FvCSP, with the higher the better for good 
viscosity. C. Distributions of HISum, with less than four required for good clearance. D. 
Distributions of MHC II minPR, where larger values mean lower likelihood to bind with MHC 
II, thus lower immunogenicity. E. Distributions of pairwise distance, that is the Levenshtein 
distance of a pair of sequences from a single source dataset. F. Distributions of cross-pairwise 
distance, that is the Levenshtein distance of a pair of sequences with one from the prior and 
the other from the baseline. The cross-pairwise distribution follows a similar shape to the 
pairwise distributions. The prior and baseline follow similar property distributions, meaning 
the prior model was able to learn similar distributions to the training samples. (Herceptin was 
used as the framework to calculate the properties of the CDRH3 sequences.) FvNetCharge, 
variable fragment net charge; FvCSP, variable fragment charge symmetry parameter; HISum, 
hydrophobicity index sum; MHC II minPR, the minimum percentage rank to bind with MHC 
II; MHC, major histocompatibility complex.

Figure 3  Property distributions of the model-generated sequences in targeting HER2 

A. Success rate of the baseline, prior, and agent models. The sequences of the baseline and 
prior have zero success rate; Agent_HER2 achieved a success rate of less than 4%; 
Agent_MPO achieved a success rate of up to 26.6%. The high success rate of Agent_MPO 
indicates that it can be useful in proposing sequences to fulfill multi-property constraints. B. 
Histogram of HER2 specificity. HER2 specificity of prior sampled sequences is zero; most 
sequences sampled from both agents have fulfilled the HER2 specificity threshold of 0.70. C. 
Distributions of FvNetCharge. For a variant, the scores of FvNetCharge and FvCSP are 
correlated. The desirable range of FvNetCharge is less than 6.20 and that of FvCSP is greater 
than 6.61. D. Distributions of FvCSP. E. Distributions of HISum, with the desirable range in 
[0, 4]. F. Distributions of MHC II minPR, with greater than 2.51 desirable. Agent_MPO shifted 
the property distributions towards the desirable ranges. HER2, human epidermal growth factor 
receptor 2. Herceptin was used as the framework to calculate the properties of the CDRH3 
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sequences.

Figure 4  Learning curve of the agent models 

A. Learning curves of success rate. Agent_MPO achieved a clearly better success rate after 
100 steps than Agent_HER2. B. Learning curves of HER2 specificity. Agent_MPO was slower 
than Agent_HER2 on learning good HER2 specificity. Because Agent_MPO was optimizing 
multiple properties while Agent_HER2 only optimized HER2 specificity. The task of 
Agent_MPO was much harder, thus requiring more time to learn. C. Leaning curves of 
FvNetCharge. Agent_MPO was learning to generate sequences to fulfill the FvNetCharge 
constraint. D. Leaning curves of FvCSP. Both curves are within the desirable range. E. Leaning 
curves of HISum. Both curves are within the desirable range. F. Leaning curves of MHC II 
minPR. Agent_MPO was learning to fulfill the MHC II minPR constraint. Agent_HER2 could 
not naturally fulfill the FvNetCharge and MHC II minPR constraints. Herceptin was used as 
the framework to calculate the properties of the CDRH3 sequences.

Figure 5  Illustration of the three conserved residues in the designed library 

A. The binding pose of Herceptin Fab against HER2. B. The molecular interactions between 
Herceptin CDRH3 and HER2. Four hydrogen bonds are formed through the residues G103, 
Y105, and D108 in Herceptin and D570 and D593 in HER2. C. The sequence logo of the 509 
designed CDRH3 sequences. Residues G103, Y105, and D108 are highly conserved among 
these sequences. Fab, antigen-binding fragment. S97, R98, and Y109 are from the Herceptin 
framework; they were fixed during generation.

Table 1  Evaluation of the models on predefined metrics 

Supplementary material

File S1  Supplementary methods and results

Figure S1  Property distributions of the designed CDRH3 library

A. Histogram of the edit distance to wild-type. The edit distances range from two to eight, with 
a median distance of six. B. Distribution of HER2 specificity. C. Distribution of FvNetCharge. 
D. Distribution of FvCSP. E. Distribution of HISum. F. Distribution of MHC II minPR. 
Herceptin was used as the framework to calculate the properties of the CDRH3 sequences.



3



4



5



6



7

Table 2  Evaluation of the models on predefined metrics 

Model Uniqueness Novelty Diversity Success rate

Baseline 1.000 0.000 9.930 0.000

Prior 1.000 0.999 9.754 0.000

Agent_HER2 0.996 1.000 5.871 0.038

Agent_MPO 1.000 1.000 6.478 0.266

Note: Agent_HER2 is the agent model trained with HER2 specificity as the target, and Agent_MPO 
is the agent model trained with multiple desirable properties, including HER2 specificity, viscosity, 
clearance, and immunogenicity. All the models achieved very good uniqueness. The prior and agent 
models achieved very good novelty. The baseline has zero novelty, as all these sequences are 
sampled from the training dataset. For diversity, the baseline is the best, and the prior model is 
closely on par with it. Agent_MPO achieved a better diversity than Agent_HER2. For success rate, 
Agent_MPO is the best (0.266) and much higher than Agent_HER2 (0.038). 10,000 CDRH3 
sequences were sampled from each of the methods. Herceptin was used as the framework to graft 
on to calculate the properties. HER2, human epidermal growth factor receptor 2.
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