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Abstract The accurate annotation of transcription start sites (TSSs) and their usage are critical for

the mechanistic understanding of gene regulation in different biological contexts. To fulfill this,

specific high-throughput experimental technologies have been developed to capture TSSs in a

genome-wide manner, and various computational tools have also been developed for in silico pre-

diction of TSSs solely based on genomic sequences. Most of these computational tools cast the

problem as a binary classification task on a balanced dataset, thus resulting in drastic false positive

predictions when applied on the genome scale. Here, we present DeeReCT-TSS, a deep learning-

based method that is capable of identifying TSSs across the whole genome based on both DNA

sequence and conventional RNA sequencing data. We show that by effectively incorporating these

two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based

methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a

meta-learning-based extension for simultaneous TSS annotations on 10 cell types, which enables

the identification of cell type-specific TSSs. Finally, we demonstrate the high precision of
ion and
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DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally

defined TSS chromatin states. The source code for DeeReCT-TSS is available at https://github.-

com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/

BT007316.
Introduction

The transcription start site (TSS) is the first nucleotide where a

gene is transcribed [1]. Promoter regions around TSSs usually
contain multiple cis-elements that can be recognized by tran-
scription factors (TFs) recruited by polymerase [2]. Therefore,

precisely locating TSSs and their associated promoter regions
is essential for understanding the cis–trans networks of tran-
scriptional regulation [3].

To fulfill this, specific high-throughput experimental tech-
nologies have been developed to capture TSSs in a genome-
wide manner. As mature transcripts produced by RNA poly-

merase II (RNAPII) have a specific cap structure at their 50

ends, a so-called cap analysis of gene expression (CAGE)
method has been developed to capture the TSSs [4]. By inte-
grating the CAGE method with massive parallel sequencing

(CAGE-seq), the method can identify TSS positions and quan-
tify the usage in a genome-wide manner. In the last two dec-
ades, Functional Annotation of The Mammalian Genome

(FANTOM), a worldwide collaborative project aiming at iden-
tifying all functional elements in mammalian genomes, has
performed CAGE-seq in dozens of cell lines and primary tis-

sues [5]. At the chromatin level, promoter regions are enriched
with specific histone post-translational modifications (PTMs),
including H3K4me3, H3K9ac, and H3K27ac. In addition,

DNA regions around TSSs are usually unbound by nucleo-
somes, therefore manifested as nucleosome-depleted regions
(NDRs). Together, such NDRs flanked by regions enriched
in H3K4me3, H3K9ac, and H3K27ac modifications could be

used to represent a promoter-specific chromatin state [6]. In
the ENCyclopedia Of DNA Element (ENCODE) project,
chromatin immunoprecipitation followed by high-throughput

sequencing (ChIP-seq) has been applied to characterize a series
of histone modification patterns in the human genome. Using
a hidden Markov model, these data enable the prediction of

different chromatin states, including the promoter-specific
ones [7].

In addition to the experimental approach, many computa-
tional methods have been developed to predict TSSs by learn-

ing features in the flanking regions of the annotated TSSs. Two
major strategies have been employed in promoter/TSS
prediction.

One focuses on manual extraction of TSSs and promoters
related cis-elements, and improves the performance by extend-
ing the predefined feature sets. For example, TSSG and TSSW

[8] consider the TATA-box score, cis-element preferences, and
potential trans-factor binding sites [9]. PromH extends the fea-
ture set of TSSW by taking into account conserved features of

major promoter functional components, including transcrip-
tion start points, TATA-boxes, and regulatory motifs, in pairs
of orthologous genes, to further improve the promoter/TSS
prediction accuracy [10].

The second strategy applies machine learning models to
automatically extract features to predict promoters/TSSs. Pro-
moter2.0 is the seminal work that uses neural networks in the
promoter identification [11], and DragonGSF further uses the

information of GC contents and CpG islands together with
neural networks to identify promoter regions [12]. Recently,
deep learning based on convolutional neural network (CNN)
has been applied to the task, including CNNProm [13],

TSSPlant [14], PromID [15], TransPrise [16], and iPSW
(PseDNC-DL) [17], which significantly outperform previous
traditional manual feature set-based tools on their target prob-

lems probably due to their powerful ability to automatically
extract sequence features, especially for the large number of
new features that are not included in those manual feature sets.

Importantly, the majority of machine learning-based methods
for TSS prediction can only solve the binary classification task
on balanced datasets and cannot be applied for genome scan-
ning due to the extreme data imbalance. So far, only PromID

is able to scan the TSSs in the small regions around known
TSSs (�5000 bp to +5000 bp) and claims the ability to scan
promoters/TSSs on a genome scale.

More importantly, even though the DNA sequence of a
promoter is identical across different types of cells, it might
be activated in only certain cell types, which shapes a cell

type-specific TSS landscape. However, all of the previous com-
putational methods only consider the DNA sequence informa-
tion and therefore are apparently unable to determine whether

a TSS is active or inactive in a given cell type. Although exper-
imental CAGE-seq or chromatin state-based methods like
ChIP-seq are able to identify active TSSs by profiling multiple
histone modification markers, they are rather laborious and

costly to perform on a grand scale. As a result, other than
FANTOM, ENCODE, and a couple of epigenome roadmap
projects, the CAGE-seq or histone modification data with

ChIP-seq have only been sparsely collected. In contrast, con-
ventional RNA sequencing (RNA-seq) has been routinely used
to characterize transcriptional profiles across tremendous

amounts of primary tissues and cell lines. Thus, for computa-
tional methods to predict active TSSs in a biological sample, it
would be convenient to integrate the conventional RNA-seq
data with the DNA sequence information to further improve

the performance in predicting TSSs precisely. On one hand,
RNA-seq data would provide a distinct coverage pattern at a
TSS flanking region. Theoretically, across a TSS, there should

manifest a sharp increase of RNA-seq coverage. On the other
hand, since only expressed regions need to be scanned, by inte-
grating RNA-seq data, the total number of sites for genome-

wide TSS prediction could be dramatically reduced.
Here, we introduce DeeReCT-TSS, a novel deep learning-

based method for the accurate prediction of TSSs by incorpo-

rating both DNA sequence and RNA-seq coverage informa-

tion as a new member in the Deep Regulatory Code and
Tools (DeeReCT) family [18,19]. For any sample with conven-
tional RNA-seq data, our method could predict active TSSs in

a genome-wide manner. Furthermore, by extending our
method through meta-learning, we use DeeReCT-TSS for

https://github.com/JoshuaChou2018/DeeReCT-TSS_release
https://github.com/JoshuaChou2018/DeeReCT-TSS_release
https://ngdc.cncb.ac.cn/biocode/tools/BT007316
https://ngdc.cncb.ac.cn/biocode/tools/BT007316
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simultaneous TSS annotations on 10 cell types, and find that
DeeReCT-TSS is able to identify cell type-specific TSSs. After
extracting sequence features from the model, putative TFs reg-

ulating these cell type-specific TSSs could be identified.
Finally, we validate the generalization power of the model
by showing that the predictions from two independent

ENCODE datasets are highly consistent with the TSSs identi-
fied based on chromatin states.

Method

Deep neural networks for binary classification

We designed a deep neural network to extract information
from both the DNA sequence and the RNA-seq coverage,

and the details of data preparation are shown in File S1A.
Both inputs went through two independent CNNs that had a
convolution layer with 64 filters of width 10 as the first layer

to extract motif features and the trend of coverage changes.
Following the convolution layer, a rectified linear unit (ReLU)
was applied as the activation function followed by the max

pooling layer. Two feature vectors were concatenated together
and fed into the fully connected (FC) layer. The last softmax
layer gave the prediction between 0 and 1. Weight decay and
dropout were applied to improve the generalization capability

of our method. We used TensorFlow 1.14.0 as the framework
of our model, trained the model, and applied the model for
prediction with one Tesla V100 GPU on average 2 h for

10,000 epochs and around 30 min for one human sample.
Following the work in PromID, we chose 1001 as the length

of both the DNA sequence and the corresponding RNA-seq

coverage inputs, in order to maintain a balance between retain-
ing enough information and reducing computing resource
requirements as longer input means more potential features
and greater memory and time requirements. The DNA

sequence was one-hot coded with the dimension of
1 � 1001 � 4, in which A was encoded as (1 0 0 0), T was
encoded as (0 1 0 0), C was encoded as (0 0 1 0), and G was

encoded as (0 0 0 1). The coverage information was strand-
sensitively counted based on the RNA-seq data with SAM-
tools [20]. Then, RNA-seq coverage information was in the

dimension of 1 � 1001 � 1 and directly used without prepro-
cessing as one of inputs to keep the original information repre-
senting the expression levels. Both the DNA sequence and the

RNA-seq coverage were fed into the network with the same
architecture, resulting in the predicted value for each site in
each TSS peak. The preparation of positive and negative data-
sets from different cell types is explained in detail in File S1A.

Circular training for genome scanning

Binary classification is built on balanced datasets, whereas the

data in genome scanning are highly unbalanced. Thus, we
introduced the iterative negative data enhancement as a nega-
tive data argumentation method to our model to reduce the

false positive rate (FPR) as shown in Algorithm 1 (File S1B).
In brief, for each repetition, we trained the model and selected
the best one by evaluating with multiple metrics, including

recall, false discovery rate (FDR), and F1-score. Then we ran-
domly selected 100 true TSS positions (+1) from the training
dataset and applied the best model on the scanning task in the
corresponding scanning window (�5000 bp to +5000 bp). For
each scanning window, we divided it into 2 partitions. One was
the positive region around the true TSS site (�500 bp to

+501 bp, with TSS locate at +1), and all others outside the
positive region were considered as negative regions. Any site
predicted as a TSS in the positive region will be considered

as true positive (TP), otherwise false positive (FP). Then half
of the negative data in the training dataset was replaced by
the randomly selected cases from FPs generated from the scan-

ning task, and the whole process was repeated again for the
next repetition. In this way, the results of the initial round were
irreverent to the circular training, so we could compare the
results of the initial round with subsequent rounds as an abla-

tion study for applying the circular training. Since the positive
and negative samples in the genome are extremely unbalanced,
the selection of the same number of negative samples as the

ground truth (negative TSSs) in the initial round could be
not representative enough, which might generate a large num-
ber of FPs during genome scanning. Therefore, by using the

circular training, the trained model could be able to perform
a more accurate TSS classification and reduce the FPR in gen-
ome scanning because continuously adding the misclassified

data to the training dataset makes the model remember more
complicated features from the negative samples.

Meta-learning across multiple cell lines

To obtain a more generalized model across different cell types,
we incorporated the state-of-the-art meta-learning algorithm
and trained the meta-model from 10 cell lines. We integrated

the Reptile [21] algorithm to achieve the meta-learning across
multiple cell types as shown in Algorithm 2 (File S1C). Given
the meta-model from 10 cell types, we further fine-tuned with

20% data of the corresponding cell type respectively, and
obtained the cell type-specific model.

Hyperparameter and model selection

To ensure that all models had a fair chance of learning a useful
representation, we trained multiple instances of each model on
the binary classification task using manually generated hyper-

parameter settings, including learning rate, number of epochs,
number of hidden layers, number of filters, batch size, momen-
tum, initial weight, weight decay, and keep probability. Then,

we selected model instances based on their training perfor-
mance and fixed the hyperparameters for all following models
as below for easier reproduction of the training process: num-

ber of epochs = 10,000, batch size = 4000, learning
rate = 1E�4, momentum = 0.98, weight decay = 4E�4,
and keep probability = 0.5.

Evaluation metrics

To evaluate our method and to objectively compare predic-
tions by our model and other methods for TSS identification,

we measured the performance using accuracy, recall, FPR,
FDR, and F1-score, which are defined as:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
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Recall ¼ TP

TPþ FN

FPR ¼ FP

FPþ TN

FDR ¼ FP

FPþ TP

F1-score ¼ 2TP

2TPþ FPþ FN

where TN means true negative and FN means false negative.
In binary classification, one region in our dataset can only

be positive or negative and all metrics work without confusion.
To better define the TP and FP during scanning along a certain
region, we firstly searched for the strongest signal predicted by

our model and counted signals with distance � tolerant dis-
tance (100 bp) to the nearest real TSS as TP, otherwise FP.
In addition, those real TSSs without a strong signal (> 0.5)
as a neighbor were counted as FN.

Clustering and empirical P value calculation

Since we randomly shifted the paired DNA sequence and cov-

erage within 50 bp from the CAGE peak to allow a certain
level of freedom for data augmentation during the training
phase, the sites at the vicinity of true TSSs could also get rel-

atively high prediction scores. Therefore, to reduce FDR by
directly using outputs from the deep learning model, we devel-
oped a clustering-based method by grouping any sites with a

prediction score (outputted from the model and the range is
from 0 to 1) larger than 0.5 and within 10 bp into a cluster with
merge function from BEDTools [22]. Any site with a predic-
tion score below 0.5 was discarded during the clustering step.

The details are shown in File S1D.

Visualization of model features and identification of TFs

To understand sequence features learned by our model during
the fine-tuning stage of meta-learning, we paired each filter in
the convolution layer of the meta-model and the fine-tuned

model of each cell type, and calculated the gain of motif infor-
mation (GMI), defined as the difference of two positional
weighted matrixes, among which each GMI was compared

with all transcription factor (TF) binding profiles of Homo
sapiens in JASPAR [23] to identify tissue-specific motifs and
TFs using Tomtom from the MEME suite [24]. There were
64 filters for each cell type, and a total number of 640 filters

(64 � 10) were obtained for 10 cell types, resulting in 640
GMIs. After matching 640 GMIs with the JASPAR database,
the matched motif–TF pairs with P < 0.001 were selected and

a total number of 157 unique TFs were identified. We further
measured the expression levels of those TFs in 10 cell types.
For each TF, we counted the profile from the fine-tuned mod-

els of 10 cell types (1: with an associated GMI; 0: without an
associated GMI) and calculated the Pearson correlation
between the profile and the expression level in 10 cell types.

42 TFs out of 157 TFs with concordant expression patterns
(Pearson correlation coefficient > 0.2) were selected and
visualized.
Results

A deep learning-based model for TSS prediction using both

DNA sequence and RNA-seq coverage information

For TSS prediction, we built a deep learning model by taking

both DNA sequence and RNA-seq coverage information as
inputs. Both inputs went through two independent CNN mod-
els that had a convolution layer with 64 filters to extract motif
features and the trend of coverage changes, respectively. Fol-

lowing the convolution layer, a ReLU was applied as the acti-
vation function followed by the max pooling layer. Two
feature vectors were then concatenated together and fed into

the FC layer. The last softmax layer gave the prediction value
between 0 and 1. To improve the generalization capability,
weight decay and dropout were applied (Figure 1A).

Incorporating RNA-seq coverage information improves TSS

prediction

To train our model, we downloaded the full set of annotated
TSSs (n = 201,802) from FANTOM (https://fantom.gsc.
riken.jp/5/), and then calculated their usage in three cell lines,
including a colon carcinoma (COLO-320), a renal carcinoma

(OS-RC-2), and a T cell leukemia cell lines (ATN-1), based
on the respective CAGE-seq data (see Method; File S1A).
The active TSSs from protein-coding genes were used as the

positive dataset, with their corresponding DNA sequences
and RNA-seq coverages as inputs. Then we randomly picked
the same number of regions with a distance between 500 bp

to 1000 bp from the nearest TSS peak as the initial negative
datasets. Since we selected the activate TSSs as the positive
dataset, the number of ground truth TSSs in different cell types

was different. An average of � 20,000 active TSSs from on
average 11,000 protein-coding genes were obtained in each cell
line (Table S1). By integrating RNA-seq data into the model,
we could capture the change of the sequencing coverage

around the TSS (Figure 1B). To compare our integrative
model with that using only DNA sequence or RNA-seq cover-
age information alone, we did the ablation study, trained three

models independently on the same training dataset, and tested
the dataset with identical initial weights, biases, and number of
epochs. Apparently, the integrative model achieves the best

performance, which is on average 3% and 13% better than
the sequence only model and coverage only model, respectively
(Table S2). Overall, the integrated model takes information
from both DNA sequences and RNA-seq coverages for TSS

identification, resulting in the improvement of the performance
compared to the model only using single source of the
information.

DeeReCT-TSS outperforms three state-of-the-art methods in

the binary classification of promoters/TSSs

To further evaluate our method, we selected three state-of-the-
art methods on the promoter/TSS identification for the com-
parison, including PromID [15], iPSW(PseDNC-DL) [17], and

TransPrise [16]. All these methods are based on CNNs, and the
main difference between our method and the others is that
DeeReCT-TSS is the only one that uses both DNA sequence

https://fantom.gsc.riken.jp/5/
https://fantom.gsc.riken.jp/5/
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Table 1 Comparison of the performance between DeeReCT-TSS and other three recently published methods in binary classification of TSSs

on three datasets

Cell line Metric DeeReCT-TSS PromID TransPrise iPSW(PseDNC-DL)

Colon carcinoma cell line Accuracy 0.93859 0.91653 0.90576 0.81711

Recall 0.90855 0.89048 0.88549 0.72727

FDR 0.03337 0.06057 0.07709 0.11341

F1-score 0.93669 0.9143 0.90381 0.79906

Adult T cell leukemia cell line Accuracy 0.90055 0.87174 0.82092 0.79513

Recall 0.85616 0.83141 0.74811 0.7772

FDR 0.06042 0.09563 0.12436 0.19389

F1-score 0.89593 0.86635 0.80686 0.79139

Renal carcinoma cell line Accuracy 0.91836 0.88151 0.85737 0.80165

Recall 0.8518 0.8308 0.80262 0.70805

FDR 0.01739 0.07542 0.09867 0.12886

F1-score 0.91253 0.87518 0.84911 0.78117

Note: DeeReCT, Deep Regulatory Code and Tools; TSS, transcription start site; FDR, false discovery rate.
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and RNA-seq coverage information as inputs but the other
three only use DNA sequence information. We trained each
model with a very large number of epochs until (almost) con-

vergence on the validation dataset. As shown in Table 1, our
method outperforms all the three methods in terms of accu-
racy, recall, FDR, and F1-score. Since PromID is the one with

the closest performance to our method and it is also the only
published method that can control the FPs in a genome-wide
scanning task, we only kept PromID for the following compar-

ison in the genome-scale scanning task.

DeeReCT-TSS enables genome-wide promoter/TSS identification

by scanning the transcribed genome

Using the RNA-seq coverage information, we could reduce the
number of sites for the genome-wide TSS scanning from 3 bil-
lion to � 800 million, although even this reduced number of

testing sites is well beyond the capacity of the previous TSS
prediction methods to achieve a reasonable number of FPs.
Since positive and negative datasets are highly unbalanced

during the genome scanning, in which less than 0.01% of scan-
ning sites are true TSSs and the rest are all negatives, we intro-
duced an iterative negative data enhancement strategy into our

model. In brief, we repeatedly trained the binary classification
model by randomly substituting negative data in the training
3

Figure 1 A deep learning-based model for TSS prediction using both

A. The schematic of the workflow and architecture of DeeReCT-TSS

reference genome and the corresponding coverage information from

network for binary prediction of TSSs. During the training process of e

obtained from scanning into the training dataset as new negative sampl

For identifying cell type-specific TSSs in multiple cell types, we used

multiple cell types in order to obtain a consensus model that has a st

particular cell type, the model can be used to achieve better performa

tuning on the meta-model. By clustering the binary predictions from

positions. Details of the model structure were described in Method. B

dashed line indicates the position of TSS, the solid curve is the mean of

confidential interval of the coverage. RNA-seq, RNA sequencing; RN

Deep Regulatory Code and Tools; TSS; transcription start site; FP, fa
dataset with FPs predicted by the model trained in the previ-
ous round (Figure 1).

In the genome-wide scanning, we predicted TSS scores for

837,507,571, 892,712,017, and 760,462,470 sites covering
15,517, 15,982, and 15,736 protein-coding genes in the colon
carcinoma, the renal carcinoma, and the T cell leukemia cell

lines, respectively. As millions of negative sites were not pre-
dicted as TSSs (TN), while much fewer sites were predicted
as TSSs (FP + TP), the FPR derived from FP divided by

the sum of FP and TN is extremely low. Therefore, we defined
a metric as the FPs in every 1000 bp to evaluate the perfor-
mance of each method. In all of these three datasets, compared
to PromID, our method could achieve a higher recall with a

much lower number of FPs in every 1000 bp (Figure 2A). How-
ever, even though the FPRs of both methods are relatively low,
due to a total number of � 800 million query positions, mil-

lions of sites predicted as TSSs are still FPs. To address this,
we further grouped the sites into clusters based on their predic-
tion scores and used the score distribution in each cluster to

evaluate whether it contains a true TSS or not (see Method).
As we expected that sites in the vicinity of the true TSS should
get high scores, the clusters harboring the true TSS should con-

tain a very dense set of high score sites. In contrast, FPs could
be derived from sparsely distributed high score sites. By taking
this into account, we could transform predictions from � 800
million sites to less than one million clusters.
DNA sequence and RNA-seq coverage information

. DeeReCT-TSS uses both DNA sequence information from the

RNA-seq as inputs, and extracts features after a deep learning

ach epoch, we used the model for scanning and integrated the FPs

es to continuously reduce the FPR of the model as circular training.

a meta-learning mechanism to train the model with data from

rong generalization ability across different cell types. Then, for a

nce on the corresponding cell type by performing a one-step fine-

scanning the genome, we could obtain the final predicted TSS

. RNA-seq coverage is dramatically increased across the TSS. The

RNA-seq converge across all true TSSs, and the shade is the 95%

APII, RNA polymerase II; ReLU, rectified linear unit; DeeReCT,

lse positive; FPR, false positive rate.
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In this way, we could reduce FDR dramatically, achieving
� 77% recall with � 25% FDR in the colon carcinoma cell
line (Figure S1A and B). Notably, the FDR is over estimated

in our prediction as we found that around half of the FPs are
still supported by the CAGE-seq, but their expression levels do
not pass the threshold (Figure S1B; File S1E). We also inves-

tigated the potential causes of FNs. It turned out that the TSSs
failed to be predicted (FN) usually have low expression levels,
and weak TSS-related sequence features. The accurate predic-

tion of these TSSs might need models to be trained by addi-
tional datasets or models incorporating additional features
(Figure S1C and D; File S1E).

In comparison, after the clustering procedure, to get a 70%

recall, FDR of the PromID method remains as high as 50%
(Figure S1A). Moreover, the central positions of the clusters
identified by our method are very close to true TSSs, which

is much more accurate than PromID (Figure 2B, Figure S1E
and F).

DeeReCT-TSS could discriminate active TSSs from inactive

TSSs

TSSs might be only used in certain cell types, and computa-

tional methods that are solely based on DNA sequences are
unlikely to determine such cell type-specific TSS usage. In
comparison, by incorporating RNA-seq information, our
method should be able to address this issue. To assess the per-

formance on this perspective, we split the predicted TSSs into
three groups: the ones only predicted by our method (Group
1), the ones only predicted by PromID (Group 2), and the ones

predicted by both methods (Group 3), and compared them
with true TSSs in each cell line. By analyzing the expression
levels of these TSSs in the respective cells, we found that the

TSSs in Groups 1 and 3 were expressed based on CAGE-seq
and the expression levels were only slightly lower than that
of the true TSSs, whereas the TSSs only predicted by PromID

(Group 2) were almost not expressed at all. Moreover, the
expression of TSSs in Group 1 was significantly higher than
that in Group 2, suggesting that a much higher proportion
of TSSs predicted by our method are truly expressed compared

to that predicted by PromID (Figure 2C).
We also performed an ablation study by only using DNA

sequence information (the sequence only model) or the integra-

tion of RNA-seq data and DNA sequence information (the
integrated model) to check the contribution of the RNA-seq
data in TSS prediction with DeeReCT-TSS. Among 201,802

TSSs annotated in FANTOM, 17,725, 19,721, and 22,171 were
used in colon, renal, and T cell with sufficient expression based
3

Figure 2 DeeReCT-TSS outperforms a recently published method in

A. The performance of DeeReCT-TSS and PromID on datasets from th

and true TSSs in the colon carcinoma cell line. C. Boxplot showing the

(TSSs predicted only by DeeReCT-TSS); Group 2 (TSSs predicted on

and PromID); and true_TSS (ground truth TSSs in each cell line, whic

0.01; *****, P < 1E–80; ns, not significant (Wilcox test). D. Meta-ge

scores from DeeReCT-TSS in three cell lines. E. Genome browser

from DeeReCT-TSS (DeeReCT-TSS_raw) and PromID (PromID_

PromID_cluster) for EIF4G3. TSSs falsely predicted by PromID were
on the CAGE-seq data and the rest were considered as unused.
The integrated model detected slightly more used TSSs than
the sequence only model in each cell line. More importantly,

the number of FPs, including the unused TSSs and predictions
without overlapping with any of the 201,802 TSSs in FAN-
TOM, was much higher in the sequence only model than the

integrated model (Table S3).
To further demonstrate that our method could distinguish

active TSSs from inactive ones, we classified all TSSs as active

or inactive based on their expression levels in each cell line. We
then compared the predicted scores between these two groups
of TSSs. As shown in Figure 2D, only active TSSs manifested
the positive signals. As one example, 24 TSSs were annotated

for EIF4G3, while only the proximal TSS was used in the colon
carcinoma cell line (represented by CAGE-seq), which could be
distinguished by our method (Figure 2E). In comparison, Pro-

mID predicted three more false TSSs, among which one is inac-
tive annotated TSS and another two are even not annotated.

Robustness of DeeReCT-TSS with different sequencing depths

and the applications across multiple species

As DeeReCT-TSS requires RNA-seq data as one input, the

sequencing depth of the RNA-seq data might impact its per-
formance. To investigate this, we generated multiple datasets
via subsampling of reads from RNA-seq data of T cell, as an
example. These datasets represented different depths, including

original (132 M), 100 M, 50 M, 10 M, and 5 M (where M
stands for millions of sequencing reads). We then applied
DeeReCT-TSS on each dataset and found that the perfor-

mance was indeed affected by the sequencing depth. However,
the identification of TSSs was quite robust once the sequencing
depth was above 50 M (Table S4).

We also checked whether DeeReCT-TSS model trained in
one species could be applied to another species. For this pur-
pose, we applied DeeReCT-TSS on an RNA-seq data from

mouse with a pre-trained model based on the data from
human. As shown in Table S5, although the performance of
the model on mouse was not as good as that of human, still,
the model was able to detect more than half of the truly

expressed TSSs. To be noted, unlike datasets from human that
had the matched RNA-seq and CAGE-seq data from FAN-
TOM in each cell type, RNA-seq and CAGE-seq data of

mouse were from two independent sources. This might also
introduce some batch effects for the predictions. Overall, these
results showed high robustness of DeeReCT-TSS on RNA-seq

data with reasonable sequencing depth and its transferability
across multiple species.
TSS identification

ree cell lines. B. Histogram of the distance between predicted TSSs

CAGE expression of multiple groups of TSSs, including: Group 1

ly by PromID); Group 3 (TSSs predicted by both DeeReCT-TSS

h is the actively expressed annotated TSSs). *, P < 0.05; **, P <

ne analysis of active TSSs and inactive TSSs with the prediction

view of CAGE-seq, RNA-seq, raw prediction scores outputted

raw), and scores after clustering (DeeReCT-TSS_cluster and

marked with red circles. CAGE, cap analysis of gene expression.
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A meta-learning-based extension for predicting cell type-specific

TSSs and associated TFs

Since DeeReCT-TSS is able to identify active TSSs in each cell
type, we would like to further explore the commonality among

different cell types and, at the same time, build a model that
can be easily generalized to handle the difference among them.
For this purpose, the state-of-the-art meta-learning strategy,
which takes advantage of an abstract model trained with data

from multiple tasks and is capable of good adaptation to a
specific task with a mini fine-tuning session, exactly meets
our needs. Here, the more specific aim was to train a general-

ized model across multiple cell types, which is also capable of
being fine-tuned for any specific cell type. To check the feasi-
bility of integrating the meta-learning strategy in DeeReCT-

TSS, we extended our analysis to 10 cell lines and a total of
53,969 TSSs that are active in at least one cell type were used
as the positive dataset. The number of TSSs that are active

across different numbers of the cell lines shows a typical bimo-
dal distribution, where the two peaks represent those only
expressed in one cell line and those expressed in all 10 cell
types, respectively (Figure 3A). Next, to obtain an abstract

model with the maximum interpretability across all 10 cell
types, we trained the meta-learning model with partial training
data, whose proportion was required to be not large and was

usually smaller than 50%, and then fine-tuned it to each cell
type (see Method; Figure 1). We did the ablation study to show
the performance of the fine-tuned model in 10 cell lines from

meta-model trained using 5%, 10%, 20%, 30%, and 50% of
TSSs in each cell line. Based on the F1-score, we found that
the performance of the model using 20% of TSSs from each
cell type for meta-training was almost saturated, while using

30% or 50% of TSSs had no significant effect to improve
the model compared to the increasing effort to use larger pro-
portional training data (Figure S2). Since we only took a small

partial dataset (20%) from each cell type for training and used
all remaining dataset for fine-tuning and testing, there was no
need to further test our model on a complete new cancer type

as in the traditional way. As shown in Table 2 and Table S2, on
the binary classification task, the meta-model trained with 10
cell types decreased the FDR by 1% on average compared

to the model trained solely on the colon carcinoma, the renal
carcinoma, and the T cell leukemia cell lines, though with on
average decreased F1-score by 4% as a trade-off for the gener-
alized model. Based on the meta-model, the fine-tuned model

shows better performance than both meta-model and the one
trained solely in each cell line with on average 5% and 1%
improvement on F1-score, respectively.

We further applied the fine-tuned model on the genome
scanning task in each cell line, and eventually, we identified
TSSs with a recall around 73% and an FDR around 28%.

Among these false predicted TSSs, half of them are annotated,
but their expression levels do not pass the threshold, and only
10% of the total predicted TSSs are neither annotated nor sup-
ported by CAGE-seq (Figure S3). We also compared the

results from the fine-tuned model to that from the model solely
trained on the colon carcinoma cell line, which shows a better
performance in terms of both recall (79.5% and 77.7%, respec-

tively) and FDR (24.4% and 25.5%, respectively). To further
evaluate the performance of our model to accurately predict
the TSSs with specific expression patterns across 10 cell types,
we correlated the prediction scores with the CAGE-seq-based
expression levels across 10 cell lines for each TSS and obtained
a strong positive correlation (median of Pearson correlation is

0.58). Notably, the correlation between prediction and CAGE-
seq expression is the lowest (median of Pearson correlation is
0.24) for those TSSs that are active in all 10 cell lines, which

is likely due to the fact that the prediction score can only deter-
mine if a TSS is active or not, but it is not a metric to measure
the TSS expression level. In contrast, for those cell type-

specific TSSs expressed in only one cell line, the median corre-
lation coefficient is as high as 0.75 (Figure 3B). Figure 3C
shows an example in SYTL2, which is active in the colon car-
cinoma, the gastrointestinal carcinoma, the natural killer T cell

leukemia, and the renal carcinoma cell lines. Such usage pat-
tern was successfully predicted by our method. Overall, these
results suggest that our model could be generalized to identify

active TSSs in different cell types.
One major advantage of our meta-learning model is that its

abstract model can capture common features of TSSs among

all cell lines, while the fine-tuned model to each cell line has
a preference to identify the active TSSs in the corresponding
cell line by enhancing the usage of the cell type-specific fea-

tures. To this end, we visualized the GMI from the convolu-
tional layers by comparing the difference between paired
filters of the meta-model and the fine-tuned model of each cell
type and matched those GMI to the motifs of TF-binding sites

(see Method). In total, 42 putative TFs with concordant
expression patterns (Pearson correlation coefficient � 0.5)
were identified across 10 cell lines (Figure 4A and B). These

TFs that are specifically expressed in some cell types, poten-
tially regulate the corresponding cell type-specific TSSs. For
example, BHLHA15/MIST1 identified in myeloma has been

reported as a plasmacytic differentiation marker and poten-
tially controlled transcriptional network with stage-specific
overexpression during plasma cells differentiation [25,26].

ETV5 identified in colon carcinoma cell lines has been reported
to be abnormally upregulated in the colorectal cancer and pos-
itively correlated with the tumor size, lymphatic metastasis,
tumor node metastasis, and worse survival [27]. Examples of

the TF motifs and the matched cis-elements extracted from
deep learning model in different cell lines are shown in
Figure 4C.

The trained meta-learning model could be applied to other

independent datasets

As the information for the active TSSs could also be encoded
at the chromatin level, to further evaluate the generalization
ability on TSS identification of our meta-learning extended
model to unseen datasets, we applied it to two cell lines HepG2

and K562, for which ENCODE project collected both RNA-
seq and different histone modification data. In total, we pre-
dicted 14,569 and 13,465 putative TSSs in HepG2 and K562,

respectively. Next, we associated the prediction with chro-
matin states of these two cell lines, which were identified by
using a series of histone modification data and TF ChIP-seq

data in the ENCODE project, including Tss, TSS flanking

region (TssF), and PromP (inactive promoter). The results
showed that our predictions were highly consistent with Tss

chromatin state in these two cell lines. Importantly, the overlap
between the predicted TSSs in HepG2 and the Tss chromatin



Figure 3 DeeReCT-TSS is capable of identifying cell type-specific TSSs

A. Numbers of active TSSs in the corresponding number of cell lines. B. Boxplot illustrating correlations between prediction scores of

TSSs from DeeReCT-TSS and CAGE expression across 10 cell lines. Each box indicating a group of TSSs expressed in corresponding cell

line numbers. Raw represents the raw prediction score outputted from the model, and cluster represents the score after clustering of the

raw score. C. UCSC genome browser visualization shows an example of TSS (highlighted in orange) from SYTL2 that is active in the

colon carcinoma, the gastrointestinal carcinoma, the NKT cell leukemia, and the renal carcinoma cell lines (represented by CAGE-seq),

which was correctly predicted by DeeReCT-TSS. The red arrows indicate the cell lines, where the TSS is active or predicted. UCSC,

University of California Santa Cruz; NKT, natural killer T.
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Table 2 Performance of meta-model and fine-tuned model on 10 cell lines

DeeReCT-TSS Metric Recall FDR F1-score

Meta-model Natural killer T cell leukemia cell line 0.7273 0.03287 0.83024

Colon carcinoma cell line 0.86235 0.02485 0.91529

Gastrointestinal carcinoma cell line 0.7546 0.03171 0.84819

Acute lymphoblastic leukemia cell line 0.71928 0.02943 0.82624

Lung carcinoma cell line 0.74477 0.03022 0.84251

Myeloma cell line 0.75222 0.02814 0.84805

Neuroblastoma cell line 0.79193 0.02486 0.87403

Renal carcinoma cell line 0.77725 0.02699 0.86418

Adult T cell leukemia cell line 0.74834 0.03211 0.84407

Testicular germ embryonal cell line 0.72749 0.03654 0.82901

Fine-tuned model Natural killer T cell leukemia cell line 0.82357 0.05374 0.89206

Colon carcinoma cell line 0.92227 0.04101 0.94027

Gastrointestinal carcinoma cell line 0.86808 0.0531 0.90578

Acute lymphoblastic leukemia cell line 0.85455 0.0653 0.89282

Lung carcinoma cell line 0.86677 0.05926 0.90224

Myeloma cell line 0.87594 0.05743 0.90803

Neuroblastoma cell line 0.87728 0.04078 0.91641

Renal carcinoma cell line 0.87969 0.04738 0.9147

Adult T cell leukemia cell line 0.86289 0.05618 0.90154

Testicular germ embryonal cell line 0.88168 0.07335 0.9036
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state from K562, as well as the overlap between the predicted
TSSs in K562 with the Tss chromatin state from HepG2, were
much lower than that within the same cell type, suggesting the

high cell type specificity of our prediction (Figure 5A).
As regions of the ENCODE chromatin state are still very

wide (� 500 bp), to inspect our predicted TSS position more

precisely, we performed the meta-gene analysis of the predicted
TSSs with H3K4m1, H3K4m2, H3K4m3, H3K9ac, and
H3K27ac ChIP-seq signals in single base-pair resolution. Sur-

prisingly, our predicted TSSs were exactly located within the
NDR flanked by the modified histones, where the transcription
was likely initiated. Again, this pattern could only be observed

by overlapping results from the same cell line (Figure 5B and
C), demonstrating again a high accuracy and specificity of
our method. Taken together, all these data suggest that
DeeReCT-TSS is a novel computational method that is cap-

able of accurately predicting active TSSs in a genome-wide
manner. It could be widely used to study TSS usage across
multiple cell types or tissues, as well as between different

pathophysiology conditions as long as conventional RNA-
seq data are available.

Discussion

Computational methods for TSS prediction have been used
to annotate TSSs and to study regulatory mechanisms via

cis-elements residing around the TSS. One shortage limiting
their practical applications is that the majority of them can
only do binary classification between sequences with TSSs

and the ones without TSSs, on a balanced dataset. However,
in the human genome, these positive and negative sequences
are highly unbalanced, while the number of negative sequences

is 15,000 times more than the positive ones. In DeeReCT-TSS,
we addressed this challenge by several means. First, we itera-
tively enhanced the negative dataset, which dramatically
decreases the amount of potential FPs by forcing the model

to distinguish between active TSSs and inactive TSSs with sim-
ilar features. In addition, we incorporated RNA-seq data
information, which significantly improves the accuracy of the
predicted TSS positions. Also, as we filtered out a huge num-
ber of query positions, this also helped to decrease the FDR

when performing the genome scanning task. Moreover, we
introduced a clustering-based method on the prediction scores
from the model, which further greatly reduces the FDR.

Finally, meta-learning technology worked together with those
strategies to ensure the robust and generalizable performance
of DeeReCT-TSS in the genome-scale TSS identification task.

In spite of the fact that the DNA sequence of a promoter is
identical in different cell types and tissues, their transcription
profiles are highly variable, resulting in distinct landscapes of

active TSSs. In the last decades, the FANTOM project anno-
tated more than 200,000 TSSs in the human genome by com-
bining CAGE-seq data from dozens of cell types, while only a
handful of them (� 10%) could be active in a single cell type or

tissue. Discriminating whether a TSS is active or inactive in
each cell type or tissue could be equally important as predict-
ing a novel TSS in studying gene regulation across cell types/

tissues and between different physiology conditions. To our
knowledge, DeeReCT-TSS is the only computational method
that is capable of accurately identifying active TSSs in a cell

type by incorporating RNA-seq data and meta-learning. By
applying our method, we expect to identify more than 70%
of the active TSSs and about 10% of our predicted TSSs might
be true FPs. As our method takes both DNA sequence and

RNA-seq coverage as inputs, some issues of RNA-seq, such
as genes with low expression and misalignment of the RNA-
seq reads, might affect the performance of our method. Indeed,

we found that our method is more powerful to identify TSSs
from genes with higher expression compared to that from
genes with lower expression (Figure S1D). This could be one

limitation of our method, while it might be neglected in prac-
tical studies when comparing two groups of samples by remov-
ing candidates showing significant differential expression.

Even though there might be some misalignment of RNA-seq
reads due to uniqueness, our model might be able to handle
this as it also takes DNA sequence as inputs. On the other
hand, for the species that have been extensively studied, such



Figure 4 Identification of putative cis-elements around TSSs and the corresponding TFs across 10 cell lines

A. Heatmap showing that the identified TFs matched with sequence elements extracted from the deep learning model in each cell line. B.

Heatmap showing the normalized expression level of the TFs across 10 cell lines. C. Examples showing the binding motifs of the identified

TFs and sequence elements extracted from the deep learning model from different cell lines (marked in red in A). TF, transcription factor.
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Figure 5 TSSs predicted in K562 and HepG2 by DeeReCT-TSS could be validated by chromatin states identified from epigenetic

information

A. Heatmap showing the proportion of predicted TSSs located in each chromatin state in K562 and HepG2. The background was

generated by randomly selecting regions, which were covered by RNA-seq data. B. Meta-gene analysis shows that the predicted TSSs

could be located within the NDR in the promoter region in HepG2. C. Meta-gene analysis shows that the predicted TSSs could be located

within the NDR in the promoter region in K562. Putative NDR within the promoter was indicated by two vertical dashed lines. NDR,

nucleosome-depleted region; ENCODE, the ENCyclopedia Of DNA Element; ChIP-seq, chromatin immunoprecipitation followed by

high-throughput sequencing.
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as human and mice, the misalignment of reads to the reference
with the well-established tools could be very rare and its

impact on our method could be very minor.
DeeReCT-TSS also has some limitations in comprehen-

sively identifying TSSs. Since more than 90% of the human

genome are non-coding and many non-coding genes may play
important roles in gene regulation, the feasibility of applying
DeeReCT-TSS on detecting TSSs for non-coding genes

remains need to be explored. It might be used for several spe-
cies of non-coding genes and fail for the rest, depending on the
characteristics of non-coding genes, such as the expression

level and whether they are independent transcriptional units.
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In addition, DeeReCT-TSS was trained by using the data from
FANTOM5, which has the matched data (RNA-seq and
CAGE-seq) for different cell lines but without data for histone

modifications and chromatin states. Further integrating epige-
netic markers could potentially improve the performance as
more information would be taken for TSS prediction. How-

ever, to date it is very challenging to find available datasets
with these three types of sequencing data simultaneously. Still,
we also plan to further improve DeeReCT-TSS and take more

sources of information into consideration in the future version,
once we can get high-quality data with RNA-seq, CAGE-seq,
and CHIP-seq simultaneously.

Finally, as demonstrated in Figure 5, the meta-model

trained from the 10 cell lines, could be generalized to other
independent samples with only conventional RNA-seq data
(HepG2 and K562). Therefore, our model is capable of being

applied to characterize active TSSs in many other cell types by
using the corresponding RNA-seq data. Recently, a pan-
cancer analysis using thousands of RNA-seq samples from

The Cancer Genome Atlas (TCGA) project revealed the wide-
spread alternative promoter regulations [28]. However, it only
studied promoters from annotated TSSs and quantified pro-

moter activity using splicing junctions of the first exon. On
one hand, there might be a tremendous amount of unanno-
tated TSSs expressed in cancers given that they often showed
high abnormal transcriptional activities. On the other hand,

the first splicing junctions could be hundreds and thousands
bp away from TSSs, which limited the spatial resolution of
that study in finding the change of TSS positions. We believe

that DeeReCT-TSS could solve these problems and it could
be used to identify TSSs that are specifically active in each can-
cer type by applying it on the TCGA RNA-seq datasets.

Code availability

DeeReCT-TSS, which is implemented as an python software

and accompanied by a user guide, is available at https://
github.com/JoshuaChou2018/DeeReCT-TSS_release and
https://ngdc.cncb.ac.cn/biocode/tools/BT007316.
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