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Abstract
Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. 

Previous bioinformatic works have mainly focused on the recognition of 

polyadenylation sites (PASs) in a given genomic sequence, which is a binary 

classification problem. Recently, computational methods for predicting the usage level 

of alternative PASs in a same gene have been proposed. However, all of them cast the 

problem as a non-quantitative pairwise comparison task and do not take the competition 

among multiple PASs into account. To address this, here we propose a deep learning 

architecture, DeeReCT-APA, to quantitatively predict the usage of all alternative PASs 

of a given gene. To accommodate different genes with potentially different numbers of 

PASs, DeeReCT-APA treats the problem as a regression task with a variable-length 

target. Based on a CNN-LSTM architecture, DeeReCT-APA extracts sequence features 

with CNN layers, uses bidirectional LSTM to explicitly model the interactions among 

competing PASs, and outputs percentage scores representing the usage levels of all 

PASs of a gene. In addition to the fact that only our method can predict quantitatively 

the usage of all the PASs within a gene, we show that our method consistently 

outperforms other existing methods on three different tasks for which they are trained: 

pairwise comparison task, highest usage prediction task, and ranking task. Finally, we 

demonstrate that our method can be used to predict the effect of genetic variations on 

APA patterns and shed light on future mechanistic understanding in APA regulation. 

Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo.

KEYWORDS: Polyadenylation; Gene regulation; Sequence analysis; Deep learning; 

Bioinformatics
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Introduction
In eukaryotic cells, the termination of Pol II transcription involves 3ʹ-end cleavage 

followed by addition of a poly(A) tail, a process termed as “polyadenylation”. Often, 

one gene could have multiple polyadenylation sites (PASs). The so-called alternative 

polyadenylation (APA) could generate from the same gene locus different transcript 

isoforms with different 3ʹ-UTRs and sometimes even different protein coding 

sequences. The diverse 3ʹ-UTRs generated by APA may contain different sets of cis-

regulatory elements, thereby modulating the mRNA stability [1–3], translation [4], 

subcellular localization of mRNAs [5–7], or even the subcellular localization and 

function of the encoded proteins [8].  Importantly, it has been shown that dysregulation 

of APA could result in various human diseases [9–12].

APA is regulated by the interaction between cis-elements located in the vicinity of 

PAS and the associated trans-factors [13]. The most well-known cis-element that 

defines a PAS is the hexamer AAUAAA and its variants located 15–30 nt upstream of 

the cleavage site, which is directly recognized by the cleavage and polyadenylation 

specificity factor (CPSF) components: CPSF30 and WDR33 [14]. Other auxiliary cis-

elements located upstream or downstream of the cleavage site include upstream UGUA 

motifs bound by the cleavage factor Im (CFIm) and downstream U-rich or GU-rich 

elements targeted by the cleavage stimulation factor (CstF) [14]. The usage of 

individual PASs for a multi-PAS gene depends on how efficiently each alternative PAS 

is recognized by these 3′-end processing machineries, which is further regulated by 

additional RNA binding proteins (RBPs) that could enhance or repress the usage of 

distinct PAS signals through binding in their proximity. In addition, the usage of 

alternative PASs is mutually exclusive. In particular, once an upstream PAS is utilized, 

all the downstream ones would have no chance to be used no matter how strong their 

PAS signals are. Therefore, proximal PASs, which are transcribed first, have positional 

advantage over the distal competing PASs [15]. Indeed, it has been observed that the 

terminal PASs more often contain the canonical AAUAAA hexamer which is 

considered to have higher affinity than the other variants, which possibly compensates 

for their positional disadvantage [16]. 

There has been a long-standing interest in predicting PASs based on genomic 

sequences using purely computational approaches. The so-called “PAS recognition 

problem” aims to discriminate between nucleotide sequences that contain a PAS and 



those do not. A variety of hand-crafted features have been proposed and statistical 

learning algorithms, e.g., random forest (RF), support vector machines (SVM), and 

hidden Markov models (HMM), are then applied on these features to solve the binary 

classification problem [17–19]. Very recently researchers started investigating the 

“PAS quantification problem”, which aims to predict a score that represents the strength 

of a PAS [20, 21]. This is much more difficult than the recognition one.

Recent developments in deep learning have made great improvements on many tasks 

[22]. With remarkable success, it has also been applied to bioinformatics tasks such as 

protein-DNA binding [23], RNA splicing pattern prediction [24], enzyme function 

prediction [25, 26], Nanopore sequencing [27, 28], and promoter prediction [29]. Deep 

learning is favored due to its automatic feature extraction ability and good scalability 

with large amount of data. As for polyadenylation prediction, deep learning models 

have been applied on the PAS recognition problem and they outperformed existing 

feature-based methods by a large margin [30]. Recently, deep learning models have 

also been applied on the PAS quantification problem, where Polyadenylation Code [20] 

was developed to predict the stronger one from a given pair of two competing PASs. 

Very recently, another model, DeepPASTA [21] has been proposed. DeepPASTA 

contains four different modules that deal with both the PAS recognition problem and 

PAS quantification problem. Similar as Polyadenylation Code, DeepPASTA also casts 

the PAS quantification problem into a pairwise comparison task.

In this study, we propose a novel deep learning method, DeeReCT-APA (Deep 

Regulatory Code and Tools for Alternative Polyadenylation), for the PAS 

quantification problem. DeeReCT-APA can quantitatively predict the usage of all the 

competing PASs from a same gene simultaneously, regardless of the number of PASs. 

The model is trained and evaluated based on the dataset from a previous study [31], 

which consists of a genome-wide PAS measurement of two different mouse strains 

(C57BL/6J (BL) and SPRET/EiJ (SP)), and their F1 hybrid. After training our model 

on the dataset, we comprehensively evaluate our model based on a number of criteria. 

We demonstrate the necessity of modeling the competition among multiple PASs 

simultaneously. Finally, we show that our model can predict the effect of genetic 

variations on APA patterns, visualize APA regulatory motifs, and potentially facilitate 

the mechanistic understanding of APA regulation.



Method

Description of DeeReCT-APA architecture

The DeeReCT-APA method is based on a deep learning architecture that contains a set 

of neural network models composed of base networks (Base-Net, one for each 

competing PAS) and upper-level interaction layers. Each base network takes a 455-nt 

long genomic DNA sequence centered around one competing PAS cleavage site as 

input and gives as output a vector which can be interpreted as the distilled features of 

that sequence. There are two types of base networks in our design, based on: (1) hand-

engineered feature extractor and (2) convolutional neural networks (CNN). The output 

of the lower-level base network is then passed to the upper-level interaction layers, 

which computationally model the process of choosing competing PASs. The interaction 

layers of DeeReCT-APA are based on Long Short Term Memory Networks (LSTM) 

[32], which have achieved remarkable success in natural language processing and can 

naturally handle sentences with an arbitrary length, therefore suitable for handling any 

number of alternative PASs from a same gene locus. The interaction layers then output 

the percentage values of all the competing PASs of the gene. The architecture is 

illustrated in Figure 1. The design of each part of the network is further explained in 

the following subsections.

We use three different base network designs: deep neural network architectures 

based on a single 1D convolution layer (Single-Conv-Net), multiple 1D convolution 

layers (Multi-Conv-Net), and a handcrafted feature extractor with fully-connected 

layers (Feature-Net). Single-Conv-Net and Multi-Conv-Net are two convolutional 

neural network (CNN) structures for Base-Net. The Single-Conv-Net consists of only 

one layer of the 1D convolutional layer and takes directly the one-hot encoded 

sequences as input. The convolutional layer has a number of convolution filters which 

become automatically-learned feature extractors after training. A rectified linear unit 

(ReLU) is used as the activation function. The max-pooling operation after that allows 

only values from highly-activated neurons to pass to the upper fully-connected layers. 

The three operations: convolution, ReLU, and max-pooling form a convolution block. 

While the Single-Conv-Net uses one convolution block, the Multi-Conv-Net uses two 

convolution blocks before fully-connected layers. The increased depth of the network 

makes it possible for the network to learn more complex representations. The structures 

of Single-Conv-Net and Multi-Conv-Net are shown in Figure 2A and B, respectively.



As a comparison, we also design a base network that works with hand engineered 

features which we call Feature-Net. The Feature-Net only consists of multiple fully-

connected layers and takes as input multiple types of features extracted from the 

sequences of interest. The features, described in [20], include polyadenylation signals, 

auxiliary upstream elements, core upstream elements, core downstream elements, 

auxiliary downstream elements [33], RNA-binding protein motifs, as well as 1-mer, 2-

mer, 3-mer, and 4-mer features (detailed in File S1 and Table S1). Each feature value 

corresponds to the occurrence of each motif. The extracted features are then z-score 

normalized. The architecture is illustrated in Figure 2C.

Design of the interaction layers

The utilization of alternative PASs is intrinsically competitive. On the one hand, as a 

multi-PAS gene is transcribed, any one of its PASs along the already transcribed region 

is possible to be used. But if one of them has already been used, it will make other PASs 

impossible to be chosen. On the other hand, given that the same polyadenylation 

machinery is used by all the alternative PASs, such competition of resources also 

contributes to the competitiveness of this process. However, previous work in 

polyadenylation usage prediction did not take this important point into account [20, 21]. 

Both existing models, Polyadenylation Code and DeepPASTA (tissue-specific 

relatively dominant poly(A) sites prediction model, Section 2.3 in [21]) can only take 

in two PASs at a time, ignoring the competition with others. Here, to overcome this 

limitation, we consider all the competing PASs at the same time and take as input all 

the PASs in a gene simultaneously into our model, then jointly predict the usage levels 

of all of them.

To fulfil this, we design the interaction layers above the base networks to model the 

interaction between different PASs. In neural networks, the most common way to 

model interactions among inputs is to introduce a recurrent neural network (RNN) layer, 

which can capture the interdependencies among inputs corresponding to each time step. 

We decide to choose the LSTM [32] as the foundation of interaction layers. LSTM is a 

type of RNN that has hidden memory cells which are able to remember a state for an 

arbitrary length of time steps, making it one of the most popular RNNs. To fit into the 

PAS usage level prediction task, each time step of LSTM corresponds to one PAS, at 

which the LSTM takes the extracted features of that PAS from the lower-level base 



network. As there is both influence from upstream PAS to downstream PAS and vice 

versa, we decide to use a bidirectional LSTM (BiLSTM), in which one LSTM’s time 

step goes from upstream PAS to downstream one and the other from downstream to 

upstream. The outputs of the two LSTMs at the same PAS are then concatenated and 

sent to the upper fully-connected layer. The fully-connected layer transforms the LSTM 

output to a scalar value representing the log-probability of that PAS to be used. After 

the log-probabilities of all competing PASs pass through a final SoftMax layer, they 

are transformed to properly normalized percentage scores, which sum up to one, 

representing their probability of being chosen. The detailed architecture is shown in 

Figure 1. We point out that, although DeepPASTA also contains a BiLSTM component, 

their BiLSTM layer is to process the sequence of one of the two competing PASs that 

are given as input. The time steps of the BiLSTM correspond to different positions in 

one particular sequence rather than to different PASs, and therefore the BiLSTM is not 

to model the interactions between different PASs, which is clearly different from the 

design in DeeReCT-APA.

As mentioned above, the aim of our model is to take all PASs of a gene as a whole 

and try to predict the usage level of each PAS as accurate as possible. Therefore, at one 

time, we must take all PASs in a gene as input. Considering that the number of PASs 

within a gene is not a constant, we design our model to take inputs of a variable length. 

Since most genes have a small number of PASs, we choose not to pad all the genes with 

dummy PASs to make them of the same length, otherwise it will be highly inefficient. 

Instead, we design the interaction layers in a way that it can take an arbitrary number 

of Base-Nets.

We further design two experiments for ablation study of DeeReCT-APA’s BiLSTM 

interaction layer. The first is to remove the BiLSTM layer and only keep the fully-

connected layer and the SoftMax layer. In this scenario, the network still considers all 

PASs of a gene simultaneously, but with a non-RNN interaction layer. The second is to 

remove the interaction layer altogether and use comparison-based training (like in 

Polyadenylation Code) to train a Base-Net. We show their performance separately in 

the “Overall Performance” section.

A genome-wide PAS quantification dataset 

A genome-wide PAS quantification dataset derived from fibroblast cells of C57BL/6J 

(BL) and SPRET/EiJ (SP), as well as their F1 hybrid is obtained from the previous 



study [31]. In the F1 cells, the two alleles have the same trans environment and the PAS 

usage difference between two alleles can only be due to the sequence variants between 

their genome sequences, making it a valuable system for APA cis-regulation study. 

Apart from APA, this kind of systems have also been used in the study of alternative 

splicing and translational regulation [34, 35].

The detailed description of the sequencing protocol and data analysis procedure can 

be found in [31]. As a brief summary, the study uses fibroblast cell lines from BL, SP, 

and their F1 hybrids. The total RNA is extracted from fibroblast cells of BL and SP 

undergoes 3′-Region Extraction and Deep Sequencing (3′READS) [16] to build a good 

PAS reference of the two strains. The 3′-mRNA sequencing is then performed in all 

three cell lines to quantify those PASs in the reference. In the F1 hybrid cell, reads are 

assigned to BL and SP alleles according to their strain specific SNPs. The PAS usage 

values are then computed by counting the sequencing reads assigned to each PAS. The 

sequence centering around each PAS cleavage site (448 nt in total) is extracted and 

undergoes feature extraction or one-hot encoding before training the model. The 

extracted features are then inputted to Feature-Net, while the one-hot encoded 

sequences are inputted to Single-Conv-Net and Multi-Conv-Net. As provided in [31], 

the raw sequencing data from which this dataset is derived is accessible at European 

Nucleotide Archive (http://www.ebi.ac.uk/ena) under the accession number 

PRJEB15336 (URL: https://www.ebi.ac.uk/ena/browser/view/PRJEB15336).

Training and evaluation of the model

We train the DeeReCT-APA models based on the parental BL/SP PAS usage level 

dataset. For F1 hybrid data, however, we choose to start from the pre-trained parental 

model (which we use either the BL parental model or the SP parental model and the 

results are shown separately) and fine-tune the model on the F1 dataset. This is because, 

due to the read assignment problem, the usage of many PASs in F1 cannot be 

unambiguously characterized by 3′-mRNA sequencing [31]. As a result, the F1 dataset 

does not contain enough number of PASs to train our model from scratch. At the 

training stage, genes are randomly selected from the training set and the sequences of 

their PASs flanking regions are fed into the network. Each sequence of PASs in a gene 

passes through one Base-Net. The parameters of the Base-Net that are responsible for 

each PAS are all shared. The Base-Net then each outputs a vector representing distilled 

features for each PAS, which is then sent to the interaction layers. The interaction layers 

http://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena/browser/view/PRJEB15336


generate a percentage score of each PAS of this gene. Cross-entropy loss between the 

predicted usage and the actual usage is used as the training target. During back-

propagation, the gradients are back-propagated through the passage originated from 

each PAS. As the model parameters are shared between base networks, the gradients 

are then summed up to update the model parameters. We use several techniques to 

reduce overfitting: (1) Weight decay is applied on weight parameters of CNN and all 

fully-connected layers. (2) Dropout is applied on BiLSTM. (3) We stop training as soon 

as the mean absolute error of the predicted usage value does not improve on the 

validation set. (4) While fine-tuning the model on F1 dataset, we use a learning rate that 

is ~100 times smaller than the one used when training from scratch.

The network is trained with the adaptive moment estimation (Adam) optimizer [36]. 

A detailed list of hyperparameters we used is specified in File S1 and Table S2. We 

construct the network using the PyTorch deep learning framework [37] and utilize one 

NVIDIA GeForce GTX 980 Ti as the GPU hardware platform.

To evaluate the performance of the model, we conduct a 5-fold cross validation at 

the gene level using all the genes in our dataset for each strain. That is, if a gene is 

selected as a training (testing) sample, all of its PASs are in the train (test) set.  At each 

time, four folds are used for training and the remaining one is used for testing. To make 

a fair comparison with Polyadenylation Code and DeepPASTA in Section 3.1, we also 

train (fine-tune) the two models and optimize their model parameters on the parental 

and F1 datasets.

Performance measures

To comprehensively evaluate DeeReCT-APA and compare it against baseline and 

state-of-the-art methods, we use the following performance measures.

Mean Absolute Error (MAE)

This metric is defined as the mean absolute error (MAE) of the usage prediction of each 

PAS, which is

𝑀𝐴𝐸 =
1
𝑀

𝑀

∑
𝑖 = 1

|𝑝𝑖 ― 𝑡𝑖|
(1)

where  stands for the predicted usage,  stands for the experimentally determined 𝑝𝑖 𝑡𝑖

ground truth usage for PAS i and M is the total number of PASs across all genes in the 



test set. This is the most intuitive way of measuring the performance of DeeReCT-APA. 

However, it is not applicable to Polyadenylation Code [20] or DeepPASTA [21] as they 

do not have quantitative outputs that can be interpreted as the PAS usage values. For 

the same reason, it is not applicable to DeeReCT-APA either, when its interaction layers 

are removed and use comparison-based training (Section “Design of the interaction 

layers”).

Comparison Accuracy

We here define the Pairwise Comparison Task. We enumerate all the pairs of PASs in 

a given gene and keep those pairs with PAS usage level difference greater than 5%. We 

then ask the model to predict which PAS in the pair is of the higher usage level. The 

accuracy is defined as,

.𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑃𝑎𝑖𝑟𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

# 𝐴𝑙𝑙 𝑃𝑎𝑖𝑟𝑠 (2)

Note that the primary reason that we use this metric is to compare with Polyadenylation 

Code and DeepPASTA, as they were designed for predicting which one is stronger 

between the two competing PASs.

Highest Usage Prediction Accuracy

We here define the Highest Usage Prediction Task. This task aims to test the model’s 

ability of predicting which PAS is of the highest usage level in a single gene. We select 

all the genes which has its highest PAS usage level greater than its second highest one 

by at least 15% in the test set for evaluation. For DeeReCT-APA, the predicted usage 

in percentage is used for ranking the PAS. For Polyadenylation Code and DeepPASTA, 

as they do not provide a predicted value in percentage, the logit value before the 

SoftMax layer is used instead. The logit values, though not in the scale of real usage 

percentage values, can at least give a ranking of different PAS sites. The highest usage 

prediction accuracy is the percentage of genes whose highest-usage PAS are correctly 

predicted.

Averaged Spearman's Correlation

We here define the Ranking Task. We convert the predicted usage levels by each model 

into a ranking of PAS sites in that gene. We then compute the Spearman’s correlation 



between the predicted ranking and ground truth ranking. The correlation values for all 

genes are then averaged together to give an aggregated score. In other words,

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
1
𝑁

𝑁

∑
𝑖 = 1

∑𝑃𝑖

𝑝 = 1(𝑝𝑟𝑖𝑝 ― 𝑝𝑟𝑖)(𝑔𝑟𝑖𝑝 ― 𝑔𝑟𝑖)

∑𝑃𝑖

𝑝 = 1(𝑝𝑟𝑖𝑝 ― 𝑝𝑟𝑖)2 ∑𝑃𝑖

𝑝 = 1(𝑔𝑟𝑖𝑝 ― 𝑔𝑟𝑖)2
(3)

where  is the total number of genes, is the number of PASs in gene , is the 𝑁 𝑃𝑖 𝑖 𝑝𝑟𝑖𝑝 

predicted rank of PAS  in gene , is the ground truth rank of PAS p in gene i,  𝑝 𝑖 𝑔𝑟𝑖𝑝 𝑝𝑟𝑖

and  are averaged predicted and ground truth ranks in gene i, respectively.𝑔𝑟𝑖

Results

Overall performance

First, to compare the performance of different Base-Net designs, we evaluated 

DeeReCT-APA with different Base-Nets: Feature-Net, Single-Conv-Net, and Multi-

Conv-Net. As shown in Table S3, both on the parental BL dataset and on the F1 dataset, 

DeeReCT-APA with Multi-Conv-Net performs the best, followed by that with Single-

Conv-Net. This is expected, as deeper neural networks have higher representation 

learning capacity. 

We then compared the performance of DeeReCT-APA with Multi-Conv-Net to 

Polyadenylation Code and DeepPASTA. As shown in Table 1, both on the parental BL 

dataset and on the F1 dataset, DeeReCT-APA with Multi-Conv-Net consistently 

performs the best across all four metrics. The standard deviation across 5-fold cross 

validation is higher in the F1 dataset than in the parental dataset, indicating the 

increased instability in F1 prediction which is probably due to the limited amount of F1 

data. As we have a rather small dataset, a very complex model like DeepPASTA is 

prone to overfitting, which is probably the reason why it performs the worst here. 

Indeed, for the smaller F1 dataset, DeepPASTA lags even more behind other methods. 

Similar results on the parental SP dataset and the performance of F1 model that is fine-

tuned from the SP parental model are shown in File S1 and Table S4. Unless otherwise 

stated, the F1 model that we use in the remaining part of the paper is the one fine-tuned 

from the parental BL model and using the training set folds that do not include the gene 

or PAS to be tested. 

Next, we show that, in terms of comparison accuracy, the improvement made by 

DeeReCT-APA is statistically significant, even though the performance improvement 



is not numerically substantial. For this purpose, we repeat the experiment for five times, 

with each of them having the dataset randomly split in a different way, and report the 

accuracy of DeeReCT-APA (Multi-Conv-Net), Polyadenylation Code, and 

DeepPASTA after 5-fold cross validation (File S1 and Table S5). The performance of 

three tools is then compared with P values computed by t-test. As shown in Table S5, 

indeed the improvement of DeeReCT-APA over the other two methods is statistically 

significant.

To demonstrate that the results of our comparison is independent of the datasets, we 

train and test DeeReCT-APA also on another dataset used in [20]. Since it consists of 

polyadenylation quantification data from multiple human tissues, we report the 

performance (comparison accuracy) of DeeReCT-APA for each tissue separately (File 

S1 and Table S6). The performance metrics of Polyadenylation Code and DeepPASTA 

is adapted from [20] and [21] accordingly. For 6 out of 8 tissues, DeeReCT-APA 

achieves higher accuracy than the other two methods.

We finally show through ablation study that the usage of BiLSTM interaction layer 

contributes to the performance of DeeReCT-APA. As shown in Table 2, we compare 

the performance of DeeReCT-APA with Multi-Conv-Net (1) without interaction layer, 

to (2) with interaction layer but without BiLSTM, and (3) with interaction layer and 

with BiLSTM (detailed architectures are shown in Figure S1). In terms of all metrics, 

both the usage of interaction layer and BiLSTM improve the performance. Although 

not numerically substantial, the improvements are in general statistically significant 

after performing a similar experiment as we have done earlier (Table S7). The 

improvement of (2) over (1) (P = 2.5E–6 for parental and P = 1.1 E–3 for F1) is more 

statistically significant than (3) over (2) (P = 3.7 E–3 for parental and P = 9.9 E–2 for 

F1) indicating that the majority of the performance gain of DeeReCT-APA comes from 

using the interaction layers and the simultaneous consideration of all PASs. This 

concludes that DeeReCT-APA, with an RNN interaction layer that considers all PASs 

of a gene at the same time, can achieve better performance on the PAS quantification 

task.

Benefits of modelling all PAS jointly — one example

To illustrate DeeReCT-APA’s ability of modeling all PASs of a gene jointly, we use 

the gene Srr (Ensembl Gene ID: ENSMUSG00000001323) as an example. As shown 



in Figure 3A, the gene Srr uses four different PASs, whereas Figure 3B–D shows the 

ground truth usage level, the prediction of DeeReCT-APA with Multi-Conv-Net and 

Polyadenylation Code, in the F1 hybrid cell for those four PASs, for both its BL allele 

(blue bars) and SP allele (green bars), respectively. As before, the logits values before 

the SoftMax layer of Polyadenylation Code are used as surrogates for predicted usage 

values (and therefore not in the range from 0 to 1). As shown in Figure 3, the prediction 

of DeeReCT-APA is much more consistent with the ground truth than that of 

Polyadenylation Code and the relative magnitude between the BL allele and SP allele 

for the prediction of DeeReCT-APA is correct for all four PASs. In comparison, 

Polyadenylation Code model predicted PAS 4 in the BL allele to be of slightly higher 

usage than the one in the SP allele whereas both in ground truth and the prediction made 

by DeeReCT-APA, the reverse is true. We hypothesize in this case that the genetic 

variants between the BL allele and SP allele in the sequences flanking PAS 4 alone 

might make the BL allele a stronger PAS than the SP allele because Polyadenylation 

Code only considers which one between the two is stronger and predicts the strength of 

a PAS solely by its own sequence, without considering those of the others. However, 

when simultaneously considering genetic variations in PAS 1, PAS 2, and PAS 3, which 

probably have stronger effects, the usage of PAS 4 becomes lower in BL than in SP.

To test our hypothesis, we design an in silico experiment by constructing a 

hypothetical allele of Srr (hereafter referred to as “mixed allele”) that has the BL 

sequence of PAS 1, PAS 2, and PAS 3, and SP sequence of PAS 4. We then ask the 

DeeReCT-APA model to predict the usage level of each PAS in the “mixed allele”,  

where the usage differences between the BL allele and the “mixed allele” should then 

be purely due to the sequence variants in PAS 4 because the two alleles are exactly the 

same on the other PASs. As shown in Figure 3E, consistent with our hypothesis, the 

usage level of PAS 4 in the BL allele is indeed higher than that in the “mixed allele”. 

This example nicely demonstrates the benefit of jointly modeling all the PASs in a gene 

simultaneously.

Allelic difference in PAS usage between BL and SP

One primary goal of developing DeeReCT-APA is to determine the effect of sequence 

variants on APA patterns. The F1 hybrid system we choose here is ideal to test how 

well such a goal is achieved, since in the F1 cells, the allelic difference in PAS usage 

can only be due to the sequence variants between their genome sequences.



Figure 4 shows two examples: the genes Zfp709 (Ensembl Gene 

ID:ENSMUSG00000056019) and Lpar2 (Ensembl Gene ID: 

ENSMUSG00000031861), where previous analysis demonstrated that in the distal PAS 

of Zfp709, a substitution (from A to T) in the SP allele relative to the BL allele disrupted 

the PAS signal (ATTAAA to TTTAAA) (Figure 4A); in the distal PAS of Lpar2, a 

substitution (from A to G) in the SP allele relative to the BL allele disrupted another 

PAS signal (AATAAA to AATAAG) (Figure 4B), causing both of them to be of lower 

usage in the SP allele than in the BL allele.

To check whether our model could be used to identify the effects of these variants, 

we plot a “mutation map” for the two genes. In brief, for each gene, given the sequence 

around the most distal PAS (suppose it is of length L), we generate 3L “mutated 

sequences”. Each one of the 3L sequences has exactly one nucleotide mutated from the 

original sequence. These 3L sequences are then fed into the model along with other 

PAS sequences from that gene and the model then predicts usage for all sites and for 

each of the 3L sequences, separately. The predicted usage values of the original 

sequence are then subtracted from each of the 3L predictions and plotted in a heatmap, 

the “mutation map”.

As shown in Figure 4C and D, the heatmap entries that correspond to the sequence 

variants between BL and SP is consistent with experimental findings from [31] (Figure 

4A and B). In addition, the mutation maps can also show the predicted effect of 

sequence variants other than those between BL and SP, giving an overview of the 

effects from all potential mutations.

Obviously, the two examples described above involved sequence variants disrupting 

PAS signals, which makes the prediction relatively trivial. To check whether our model 

could be used for the variants with more subtle effect, we choose a third example, the 

gene Alg10b. Previous experiments showed that the usage of the most distal PAS of its 

BL allele is higher than its SP allele (Figure 5A). Using reporter assays (Figure 5B), it 

has been demonstrated that [31] an insertion of UUUU in the SP allele relative to the 

BL allele contributes to this reduction in usage (Figure 5C). To check whether 

DeeReCT-APA could reveal such effects, we also construct the same four in silico 

sequences as in [31] : BL, SP, BL2SP, and SP2BL. Together with other PASs of  

Alg10b, the four sequences are feed to the DeeReCT-APA model, separately. As shown 

in Figure 5D, comparing BL with BL2SP and SP with SP2BL, our model is able to 

reveal the negative effect of poly(U) tract.



To globally evaluate the performance of DeeReCT-APA on predicting the allelic 

difference in PAS usage, we compare the predicted allelic difference versus 

experimentally measured allelic difference in a genome-wide manner (Figure 6A). As 

a baseline control, we do the same for the prediction made by the Polyadenylation Code 

where logit values before SoftMax are again used as surrogates for the predicted allelic 

difference in PAS usage (Figure 6B). Here, the F1 model fine-tuned from the BL 

parental model is used. Similar results of the F1 model fine-tuned from the SP parental 

model are shown in File S1 and Figure S2. It is worth noting that this is a very 

challenging task because the training data do not well represent the complete landscape 

of genetic mutations. That is, the BL dataset only contains invariant sequences from 

different PASs, and the F1 dataset contains a limited number of genetic variants.

We then compute the Pearson correlation between the experimentally measured 

allelic usage difference and the ones predicted by the two models. Clearly, DeeReCT-

APA outperforms Polyadenylation Code. We further evaluate the Pearson correlation 

values using six subsets of the test set, each filtering out PASs with allelic usage 

difference less than 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, respectively (Figure 6C). When the allelic 

usage difference is small, their relative magnitudes are more ambiguous and the 

experimental measurement of their allelic usage difference (used here as ground truth) 

are less confident. Indeed, with the increasing allelic difference, the prediction accuracy 

increased for both DeeReCT-APA and Polyadenylation Code. Importantly, in all these 

groups, DeeReCT-APA shows consistently better performance.

Visualization of convolutional filters

To show the knowledge learned by the convolutional filters of DeeReCT-APA, we 

follow a similar procedure as in [36] to visualize the convolutional filters of the model. 

The aim of visualization is to reveal the important subsequences around 

polyadenylation sites that activate a specific convolutional filter. In contrast to [38], in 

which the researchers only used sequences in the test set for visualization, we use all 

sequences in the train and test dataset of F1 for visualization due to the smaller size of 

our dataset. In visualization, neither the model parameters nor the hyperparameters are 

tuned on the test set, our usage of test set for visualization is therefore legitimate. For 

all the learned filters in layer 1, we convolve them with all the sequences in the above 

dataset, and for each sequence, its subsequence (having the same size as the filters) with 



the highest activation on that filter is extracted and accumulated in a position frequency 

matrix (PFM). The PFM is then ready for visualization as the knowledge learned by 

that specific filter. For layer 2 convolutional filters, as they do not convolve with raw 

sequences during training and testing, directly convolving it with the sequences in the 

dataset as we did for layer 1 would be undesirable. Instead, the layer 2 activations are 

calculated by a partial forward pass in the network and the subsequences of the input 

sequences in the receptive field of the maximally-activated neuron is extracted and 

accumulated in a PFM.

As shown in Figure 7A and B, DeeReCT-APA is able to identify the two strongest 

PAS hexmer, AUUAAA and AAUAAA [31]. In addition, one of the layer 2 

convolutional filters is able to recognize the pattern of a mouse specific PAS hexamer 

UUUAAA [30] (Figure 7C). Furthermore, a Poly-U island motif previously reported in 

[38] could also be revealed by DeeReCT-APA (Figure 7D). A complete visualization 

of all the 40 filters in layer 1 and 40 filters in layer 2 is shown in Figures S3 and S4.

Discussion and conclusion
In this study, we made the first attempt to simultaneously predict the usage of all 

competing PASs within a gene. Our method incorporates both sequence-specific 

information through automatic feature extraction by CNN and multiple PASs’ 

competition through interaction modeling by RNN. We trained and evaluated our 

model on the genome-wide PAS usage measurement obtained from 3′-mRNA 

sequencing of fibroblast cells from two mouse strains as well as their F1 hybrid. Our 

model, DeeReCT-APA, outperforms the state-of-the-art PAS quantification methods 

on the tasks that they are trained for, including pairwise comparison, highest usage 

prediction and ranking task. In addition, we demonstrated that modeling all the PASs 

of a gene simultaneously captures the mechanistic competition among the PASs and 

reveals the genetic variants with regulatory effects on PAS usage. 

A similar idea of using BiLSTM to model competitive biological processes was 

proposed recently in [39]. The researchers used BiLSTM to model the usage level of 

competitive alternative 5′/3′ splice sites. Given the similarity of modeling competing 

polyadenylation sites and splice sites, it is therefore not surprising that DeeReCT-APA, 

which also incorporates BiLSTM to model the interactions among competing 

polyadenylation sites, achieves the best performance on the PAS quantification task. 



Although DeeReCT-APA provides the first-of-its-kind method to model all the 

PASs of a gene, it still has room for improvement. As shown in Figure 3, the model has 

limited accuracy when the usage is very high or very low (comparing Figure 3B and 

C). In addition, for allelic comparison as shown in Figure 5, some PASs with high 

allelic usage difference are predicted to be of low difference (false negatives, along X 

axis) and vice versa (false positives, along Y axis). One of the main reasons for our 

model’s limitation, as well as for all the other PAS quantification methods, is that all 

the existing genome-wide PAS quantification datasets used as training data could only 

sample the limited number of naturally occurring sequence variants. Although in our 

study the two parental strains from which the F1 hybrid mouse was derived are already 

the evolutionarily most distant ones among all the 17 mouse strains with complete 

genomic sequences, the number of genetic variants is still rather limited. To address 

this limitation and provide a complementary dataset, we are working on establishing a 

large-scale synthetic APA mini-gene reporter-based system which samples the 

regulatory effect of millions of random sequences (manuscript in preparation). Another 

limitation of our current model lies in the fact that it does not take all the factors with 

potential PAS regulatory effects into consideration. For example, transcription kinetics, 

i.e., the elongation rate of Pol II, which is not considered by the model in this study, 

can also affect APA choice [40]. Similarly, DeeReCT-APA does not take the distance 

between consecutive PASs into account, which, together with the transcription 

elongation rate, can also affect APA [41]. All of them are potential directions for further 

improvement.

Finally, very recently, Zhang et al. showed that effectively combining the power of 

deep learning and the information in RNA-seq data can significantly boost the 

performance for investigating the pattern of alternative splicing [42]. Indeed, our 

preliminary results showed that also for the recognition of APA patterns, there are 

substantial cases in which deep learning cannot make accurate prediction but utilizing 

the pattern of RNA-seq coverage around the cleavage site could provide clear evidence, 

and vice versa. Future work integrating the strength of deep learning on genomic 

sequences and experimental RNA-seq data will for certain not only improve the model 

performance, but also shed more light on the APA regulatory mechanisms.

Code availability



Our implementation of DeeReCT-APA using the PyTorch [37] library is available at 

the repository (https://github.com/lzx325/DeeReCT-APA-repo). The genome-wide 

PAS quantification dataset of parental and F1 mouse fibroblast cell is available in the 

subfolder ‘APA_ML’. 

CRediT author statement
Zhongxiao Li: Conceptualization, Methodology, Software, Writing - original draft, 

Visualization. Yisheng Li: Data curation, Writing - review & editing. Bin Zhang: Data 

curation, Writing - review & editing. Yu Li: Methodology, Investigation, Writing - 

review & editing. Yongkang Long: Writing - review & editing. Juexiao Zhou: 

Investigation, Writing - review & editing. Xudong Zou: Investigation, Writing - review 

& editing. Min Zhang: Investigation, Writing - review & editing. Yuhui Hu: 

Investigation, Writing - review & editing, Supervision, Funding acquisition. Wei Chen: 

Investigation, Writing - review & Editing, Supervision, Project Administration, 

Funding acquisition. Xin Gao: Investigation, Writing - review & editing, Supervision, 

Project administration, Funding acquisition. All authors read and approved the final 

manuscript.

Competing interests
The authors have declared no competing interests.

Acknowledgements
This work was supported by the King Abdullah University of Science and Technology 

(KAUST) Office of Sponsored Research (OSR) (Grant Nos. URF/1/4098-01-01, 

BAS/1/1624-01, FCC/1/1976-18-01, FCC/1/1976-23-01, FCC/1/1976-25-01, 

FCC/1/1976-26-01, and FCS/1/4102-02-01), the International Cooperation Research 

Grant from Science and Technology Innovation Commission of Shenzhen Municipal 

Government, China (Grant No. GJHZ20170310161947503 to YH), and the Shenzhen 

Science and Technology Program, China (Grant No. KQTD20180411143432337 to 

YH and WC).

ORCID
0000-0003-2480-0750 (Zhongxiao Li)

https://github.com/lzx325/DeeReCT-APA-repo


0000-0001-8015-7128 (Yisheng Li)

0000-0001-8835-8370 (Bin Zhang)

0000-0002-3664-6722 (Yu Li)

0000-0003-0953-7325 (Yongkang Long)

0000-0002-6739-6236 (Juexiao Zhou)

0000-0002-2958-0438 (Xudong Zou)

0000-0002-3462-3711 (Min Zhang)

0000-0002-5210-5301 (Yuhui Hu)

0000-0003-3263-1627 (Wei Chen)

0000-0002-7108-3574 (Xin Gao)

References
[1] Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are 
there unifying principles? Nucleic Acids Res. 2005;33:7138-50.
[2] Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA 
degradation. Trends Biochem Sci 1995;20:465–70.
[3] Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated 
gene silencing. Nat Rev Genet 2015;16:421–33.
[4] Lau AG, Irier HA, Gu J, Tian D, Ku L, Liu G, et al. Distinct 3'UTRs differentially 
regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). 
Proc Natl Acad Sci U S A 2010;107:15945–50.
[5] Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 
Localization of ASH1 mRNA particles in living yeast. Mol. Cell 1998;2:437–45.
[6] Ephrussi A, Dickinson LK, Lehmann R. Oskar organizes the germ plasm and directs 
localization of the posterior determinant nanos. Cell 1991;66:37–50.
[7] Niedner A, Edelmann FT, Niessing D. Of social molecules: The interactive 
assembly of ASH1 mRNA-transport complexes in yeast. RNA Biol 2014;11:998–1009.
[8] Berkovits BD, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane 
protein localization. Nature 2015;522:363–7.
[9] Yasuda M, Shabbeer J, Osawa M, Desnick RJ. Fabry disease: novel alpha-
galactosidase A 3'-terminal mutations result in multiple transcripts due to aberrant 3'-
end formation. Am J Hum Genet 2003;73:162–73.
[10] Bennett CL, Brunkow ME, Ramsdell F, O'Briant KC, Zhu Q, Fuleihan RL, et al. 
A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) 
leads to the IPEX syndrome. Immunogenetics 2001;53:435–9.
[11] Higgs DR, Goodbourn SE, Lamb J, Clegg JB, Weatherall DJ, Proudfoot NJ. 
Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 
1983;306:398–400.
[12] Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH, Jr. Thalassemia due to a 
mutation in the cleavage-polyadenylation signal of the human beta-globin gene. Embo 
j 1985;4:453–6.
[13] Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, 
regulation and function. Nat Rev Genet 2013;14:496-506.



[14] Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3'-end processing. 
Cellular and Molecular Life Sciences 2008;65:1099–122.
[15] Shi Y. Alternative polyadenylation: new insights from global analyses. RNA 
2012;18:2105-17.
[16] Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, et al. Analysis of alternative 
cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat 
Methods 2013;10:133–9.
[17] Kalkatawi M, Rangkuti F, Schramm M, Jankovic BR, Kamau A, Chowdhary R, et 
al. Dragon PolyA Spotter: predictor of poly(A) motifs within human genomic DNA 
sequences. Bioinformatics (Oxford, England) 2012;28:127–9.
[18] Magana-Mora A, Kalkatawi M, Bajic VB. Omni-PolyA: a method and tool for 
accurate recognition of Poly(A) signals in human genomic DNA. BMC Genomics 
2017;18:620.
[19] Xie B, Jankovic BR, Bajic VB, Song L, Gao X. Poly(A) motif prediction using 
spectral latent features from human DNA sequences. Bioinformatics 2013;29:i316–25.
[20] Leung MKK, Delong A, Frey BJ. Inference of the human polyadenylation code. 
Bioinformatics 2018;34:2889–98.
[21] Arefeen A, Xiao X, Jiang T. DeepPASTA: deep neural network based 
polyadenylation site analysis. Bioinformatics 2019;35:4577–85.
[22] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44.
[23] Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence 
specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotech 
2015;33:831–8.
[24] Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated 
splicing code. Bioinformatics 2014;30:i121–9.
[25] Li Y, Wang S, Umarov R, Xie B, Fan M, Li L, et al. DEEPre: sequence-based 
enzyme EC number prediction by deep learning. Bioinformatics 2018;34:760–9.
[26] Zou Z, Tian S, Gao X, Li Y. mlDEEPre: Multi-Functional Enzyme Function 
Prediction With Hierarchical Multi-Label Deep Learning. Frontiers in Genetics 2019;9.
[27] Han R, Li Y, Wang S, Gao X, Bi C, Li M. DeepSimulator: a deep simulator for 
Nanopore sequencing. Bioinformatics 2018;34:2899–908.
[28] Wang S, Li Z, Yu Y, Gao X. WaveNano: a signal-level nanopore base-caller via 
simultaneous prediction of nucleotide labels and move labels through bi-directional 
WaveNets. Quantitative Biology 2018;6:359–68.
[29] Umarov R, Kuwahara H, Li Y, Gao X, Solovyev V. Promoter analysis and 
prediction in the human genome using sequence-based deep learning models. 
Bioinformatics 2019;35:2730–7.
[30] Xia Z, Li Y, Zhang B, Li Z, Hu Y, Chen W, et al. DeeReCT-PolyA: a robust and 
generic deep learning method for PAS identification. Bioinformatics 2019;35:2371–9.
[31] Xiao MS, Zhang B, Li YS, Gao Q, Sun W, Chen W. Global analysis of regulatory 
divergence in the evolution of mouse alternative polyadenylation. Molecular Systems 
Biology 2016;12:890.
[32] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation 
1997;9:1735–80.
[33] Hu J, Lutz CS, Wilusz J, Tian B. Bioinformatic identification of candidate cis-
regulatory elements involved in human mRNA polyadenylation. RNA 2005;11:1485–
93.
[34] Gao Q, Sun W, Ballegeer M, Libert C, Chen W. Predominant contribution of cis-
regulatory divergence in the evolution of mouse alternative splicing. Mol Syst Biol 
2015;11:816.



[35] Hou J, Wang X, McShane E, Zauber H, Sun W, Selbach M, et al. Extensive allele-
specific translational regulation in hybrid mice. Mol Syst Biol 2015;11:825.
[36] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 
2014.
[37] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An 
imperative style, high-performance deep learning library. Advances in Neural 
Information Processing Systems 2019:8024–35.
[38] Bogard N, Linder J, Rosenberg AB, Seelig G. A Deep Neural Network for 
Predicting and Engineering Alternative Polyadenylation. Cell 2019;178:91–106.e23.
[39] Zuberi K, Gandhi S, Bretschneider H, Frey BJ, Deshwar AG. COSSMO: 
predicting competitive alternative splice site selection using deep learning. 
Bioinformatics 2018;34:i429–i37.
[40] Pinto PAB, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska 
PS, et al. RNA polymerase II kinetics in polo polyadenylation signal selection. The 
EMBO journal 2011;30:2431–44.
[41] Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and 
disease. Nature Reviews Genetics 2019;20:599–614.
[42] Zhang Z, Pan Z, Ying Y, Xie Z, Adhikari S, Phillips J, et al. Deep-learning 
augmented RNA-seq analysis of transcript splicing. Nature Methods 2019;16:307–10.

 



Figure legends

Figure 1  Illustration of the DeeReCT-APA architecture (using BiLSTM as an 

interaction layer) 

Figure 2  Three designs of Base-Net

All three of the designs output a feature vector that represents distilled features of the 

input sequence. A. Single-Conv-Net uses a single convolution layer for feature 

extraction. B. Multi-Conv-Net uses multiple convolution layers for feature extraction. 

C. Feature-Net contains a hand-crafted feature extractor before being processed by 

fully-connected layers.

Figure 3  Prediction of Srr 

This shows one example of the benefit of modelling all PASs jointly. Each panel shows 

the predicted or ground truth usage of each of its four PASs. A.  PASs of Srr. B. Ground 

Truth. C. DeeReCT-APA’s (Multi-Conv-Net) prediction. D. Polyadenylation Code’s 

prediction. E. DeeReCT-APA’s (Multi-Conv-Net) prediction of “mixed allele”. 

Figure 4  Previous experimental findings and mutation map of Zfp709 and Lpar2

Mutation map is consistent with previous experimental findings on two genes, Zfp709 

(A and C) and Lpar2 (B and D). A. and B. Sequencing read coverage graphs of Zfp709 

(A) and Lpar2 (B) (adapted from Figure 4H of [31]). The identified PASs are marked 

by red triangles on top of the sequencing read coverage (black coverage graph). The 

sequence variants of the PASs shaded in pink between BL and SP strains are shown on 

the top. C. and D. Mutation maps of Zfp709 (C) and Lpar2 (D). The SP genes Zfp709 

and Lpar2 can be viewed as undergoing a substitution relative to BL. The four heatmap 

entries above each letter of the sequence show the relative change of usage level when 

the nucleotide at that position is substituted with the nucleotide of the corresponding 

row. Darker red indicates greater increase in usage and darker blue indicates more 

decrease in usage. The entries that correspond to the genetic variants between BL and 

SP in A and B are marked by red squares.



Figure 5  Previous experimental findings and DeeReCT-APA’s prediction of 

Alg10b

In silico prediction for the Alg10b PAS reporter is consistent with previous 

experimental findings. A. Sequencing read coverage graph and sequence variants of 

Alg10b. The red triangles mark the identified PAS sites. B. The structures of PAS 

reporter constructs of Alg10b. “BL” is the original BL version of the most distal PAS, 

“SP” is the original SP version, “BL2SP” is the BL sequence only inserted with TTTT 

at the corresponding location, and “SP2BL” is the SP sequence only deleted with TTTT 

at the corresponding location. C. Experimental results of PAS reporter assay for the 

four reporters. D. In silico prediction of PAS reporter usage. Panels A–C are adapted 

from Figure 4H of [31]. See text for more details. 

Figure 6  Comparison of the allelic usage difference predicted by DeeReCT-APA 

and Polyadenylation Code

F1 model fine-tuned from BL parental model is used. A. Allelic usage difference 

predicted by DeeReCT-APA. B. Allelic usage difference predicted by Polyadenylation 

Code. The red line shows the perfect prediction. C. Pearson correlations and their P 

values between two quantities at different minimum allelic usage difference. 

Figure 7  Visualization of learned convolutional filters in DeeReCT-APA

Some visualization examples of the learned convolutional filters of DeeReCT-APA are 

shown. A. and B. The most common polyadenylation motifs AUUAAA and AAUAAA 

are learned in layer 1 convolutional filter #2 and #37, respectively. C. Visualization of 

a layer 2 filter #38 showing a mouse specific polyadenylation motif UUUAAA. D. 

Layer 2 filter #19 showing the poly-U islands on polyadenylation. Note that the layer 2 

filter visualization position frequency matrices are wider than the layer 2 filter (12 nt) 

because the receptive field of neurons in a deeper layer is in general greater than their 

corresponding filter width.

Tables



Table 1  Performance summary for the BL parental model and the F1 model

Table 2  Performance of DeeReCT-APA using different interaction layers

Supplementary material

File S1 Supplementary materials for DeeReCT-APA

Figure S1  The structures of DeeReCT-APA models used in the ablation study

A. The structure of DeeReCT-APA with interaction layers but without BiLSTM. B. 

The structure of DeeReCT-APA with interaction layers removed. Comparing A with 

Figure 1 in the main text, it has BiLSTM removed and only has the affine layer in the 

interaction layers. In B, the interaction layers are removed altogether and DeeReCT-

APA resorted to comparison-based training (to predict which one of the two PAS is of 

higher usage). Note that an additional affine layer is added on top of the Base Networks 

to cast the output of the base network (which is a vector) into a scalar.

Figure S2  Comparison of the allelic usage difference prediction of DeeReCT-

APA and Polyadenylation Code

F1 model fine-tuned from SP parental model is used. A. B. The horizontal axis is the 

ground truth allelic usage value difference between two homologous PAS (which is the 

BL usage value minus the SP usage value). The vertical axis shows the predicted allelic 

usage value difference. The scatter plot of DeeReCT-APA is shown in Panel A and 

Polyadenylation Code is shown in Panel B. As DeeReCT-APA predicts the usage value 

in percentage, we draw a red line that shows the perfect prediction. C. Pearson 

correlations between two quantities at different minimum allelic usage difference are 

shown in the table below.

Figure S3  Visualization of convolutional filters in layer 1 of DeeReCT-APA

There are 40 convolutional filters in layer 1 of DeeReCT-APA. The model is trained 

on parental BL dataset and fine-tuned on F1.



Figure S4  Visualization of convolutional filters in layer 2 of DeeReCT-APA

There are 40 convolutional filters in layer 2 of DeeReCT-APA. The model is trained 

on parental BL dataset and fine-tuned on F1.

Table S1  List of features used in Feature-Net and their corresponding 

dimensions

Table S2  List of hyperparameters for the three DeeReCT-APA models

Table S3  Performance summary for the BL parental model and the F1 model 

fine-tuned from the BL parental model

Table S4  Performance summary for the SP parental model and the F1 model 

fine-tuned from the SP parental model

Table S5  Replicated experiments of 5-fold cross validation on 5 random splits

Table S6  Comparison accuracy on dataset from Leung et al. 2018 [20]

Table S7  Replicated experiments of ablation study

Table 1  Performance summary for the BL parental model and the F1 model

Performance scoreModel

MAE Comparison 
accuracy

Highest 
usage 
prediction 
accuracy

Averaged 
Spearman’s 
correlation

Performance on parental dataset
DeeReCT-APA (Multi-
Conv-Net)

𝟏𝟕.𝟐𝟐% ± 𝟎.𝟑%𝟕𝟕.𝟔𝟒% ± 𝟎.𝟒% 𝟔𝟑.𝟒𝟖% ± 𝟎.𝟗%𝟎.𝟓𝟏𝟒𝟎 ± 𝟎.𝟎𝟐𝟏

Polyadenylation Code N/A 75.88% ± 0.8% 59.82% ± 1.5%0.4673 ± 0.022
DeepPASTA N/A 74.08% ± 1.1% 58.78% ± 1.4%0.4394 ± 0.017
Performance on F1 dataset
DeeReCT-APA (Multi-
Conv-Net)

𝟏𝟕.𝟖𝟎% ± 𝟎.𝟑%𝟕𝟕.𝟏𝟒% ± 𝟏.𝟐% 𝟔𝟒.𝟓𝟐% ± 𝟎.𝟕%𝟎.𝟒𝟓𝟔𝟕 ± 𝟎.𝟎𝟎𝟗

Polyadenylation Code N/A 74.20% ± 0.1% 59.04% ± 0.9%0.4224 ± 0.014
DeepPASTA N/A 70.14% ± 1.5% 53.82% ± 1.7%0.3693 ± 0.018

Note: The parental model is trained from scratch and the F1 model is fine-tuned from 

the BL parental model. The table shows the performance of three models across four 

evaluation metrics. Data are shown as mean ± SD. The best performance is in bold. See 

Section “Overall performance” for details. For parental dataset, the values of MAE, 



comparison accuracy, and highest usage prediction accuracy for a random predictor are 

, , and , respectively. For F1 dataset, they are ,  43.12% 50.00% 25.49% 40.96% 50.00%

and , respectively. MAE, mean absolute error; N/A, not applicable. 28.56%

Table 2  Performance of DeeReCT-APA using different interaction layers

Performance scoreModel

MAE Comparison 
accuracy

Highest 
usage 
prediction 
accuracy

Averaged 
Spearman’s 
correlation

Performance on parental dataset
DeeReCT-APA
(Multi-Conv-Net; no 
interaction layer)

- 76.12% ± 
0.5%

60.02% ± 
0.7%

0.4988 ± 
0.027

DeeReCT-APA
(Multi-Conv-Net; w/o 
BiLSTM)

17.54% ± 
0.3%

77.12% 
±0.5%

61.73% ± 
0.6%

0.5007 
±0.034

DeeReCT-APA
(Multi-Conv-Net; 
BiLSTM)

17.22% ± 
0.3%

77.64% ± 
0.4%

63.48% ± 
0.9%

0.5140 ± 
0.021

Performance on F1 dataset
DeeReCT-APA
(Multi-Conv-Net; no 
interaction layer)

- 76.28% ± 
1.1%

61.72% ± 
0.8%

0.4337 ± 
0.019

DeeReCT-APA
(Multi-Conv-Net; w/o 
BiLSTM)

18.03% ± 
0.2%

76.77% ± 
1.0%

63.44% ± 
0.3%

0.4751 ± 
0.011

DeeReCT-APA
(Multi-Conv-Net; 
BiLSTM)

17.80% ± 
0.4%

77.14% ± 
1.2%

64.52% ± 
0.7%

0.4957 ± 
0.009

Note: For DeeReCT-APA without interaction layer, the model is trained based on 

comparison and its output cannot be interpreted as a percentage score. Therefore, like 

for Polyadenylation Code and DeepPASTA earlier, we do not report its MAE value. 

For parental dataset (BL), the values of MAE, comparison accuracy, and highest usage 

prediction accuracy for a random predictor are ,  and , 43.12% 50.00%, 25.49%



respectively. For F1 dataset (fine-tuned from parental BL model), they are , 40.96%

 and , respectively. Data are shown as mean ± SD. The best 50.00%, 28.56%

performance is in bold.
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