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Artificial intelligence (AI) in omics
analysis raises privacy threats to
patients. Here, we briefly discuss
risk factors to patient privacy in
data sharing, model training, and
release, as well asmethods to safe-
guard and evaluate patient privacy
in AI-driven omics methods.
Sequencing an individual’s genome
presented a significant challenge three
decades ago. Now, many research pro-
jects such as The Cancer Genome Atlas
(TCGA), the 100,000 Genomes Project,
and the Earth BioGenome Project (EBP)
have generated a flood of omics data, ex-
tracted from millions of individuals through
high-throughput sequencing platforms like
RNA-seq and single-cell RNA-seq (scRNA-
seq). Many AI-driven omics methods took
advantage of the omics data explosion and
have facilitated significant advances in
omics analysis. However, as more data are
generated and published, a substantial vol-
umeof potentially private genetic information
from those omics data may be increasingly
exposed. The utilization of AI-driven omics
methods further compounds this issue,
posing a challenge to patient privacy [1].
Meanwhile, stringent policy regulations
such as the General Data Protection
Regulation (GDPR), the Health Insurance
Portability and Accountability Act of 1996
(HIPAA), and the California Consumer
Privacy Act have been in place since the
20th century to safeguard patient privacy
[2]. In this situation, three interconnected
questions are raised to the community as
shown in Figure 1. (i) What are the patient
privacy issues associated with omics data
and AI-driven omics methods? (ii) How
can patient privacy be preserved in the de-
velopment and application of AI-driven
omics methods? (iii) How can we evaluate
the adequacy of patient privacy protection
and assess privacy risks associated with
AI-driven omics methods?

Privacy was first defined by Samuel D.
Warren and Louis Brandeis as the ‘right to
be let alone’ in 1890. In recent years, the
notion of the ‘right to be forgotten’ (RTBF)
has also been integral to defining privacy
[2,3]. However, in the realm of omics, pri-
vacy assumes a more specific dimension,
primarily concerned with protecting
patients’ genetic data or any sensitive infor-
mation that could be inferred from omics
data. It is important to note that the omics
data itself contains the patient privacy. For
example, various features extracted from
genomics and transcriptomics data, such
as SNPs, short tandem repeats (STRs),
structural variants (SVs), and gene expres-
sion patterns, serve as biomarkers for
many human traits, ranging from physical
characteristics like eye and hair color to
complex attributes like height and disease
susceptibility [4]. In certain scenarios, even
an individual’s protein expression levels in
blood plasma from proteomics data analy-
sis could be used to identify individuals [5].
As one of the most advanced sequencing
technologies, the analysis of spatial tran-
scriptomics requires the usage of tissue
images, which introduces an additional
layer of privacy concerns. The aforemen-
tioned privacy considerations become es-
pecially critical during the sharing and
storage of omics data, as these datasets
become susceptible to privacy attacks.
Methods such as data linkage, DNA phe-
notyping, pedigree analysis, genotype
imputation, and phenotype inference
pose potential risks to this process [6].
In addition to the data itself, the advent
of AI-driven omics methods introduces
privacy concerns. Processes like model
training and public model release may
cause potential privacy issues. Recent
studies underscore the vulnerability of
AI-driven omics methods, particularly
those employing deep learning (DL)
models. It has been demonstrated that,
during the training process, it is possible
to infer original data by extracting inter-
mediate information like gradients [7].
Even after the model is trained, there re-
mains the potential to extract private in-
formation about the training data by
attacking the trained AI model [8]. These
privacy intricacies necessitate a compre-
hensive understanding and vigilant man-
agement to ensure the responsible and
secure advancement of omics and AI-
driven methods.

Therefore, recent studies propose various
strategies to protect patient privacy across
distinct stages of omics data utilization and
the development of AI-driven omics
methods. One straightforward approach is
controlled access, where data is placed
behind controlled access barriers. For in-
stance, the National Institutes of Health
(NIH) altered its genomic summary results
(GSR) data-sharing policies post-2008 to
incorporate controlled access measures.
Anonymization is another most commonly
used strategy, although research indicates
its vulnerability. Cryptographic approaches,
including homomorphic encryption (HE) [9],
trusted execution environments (TEEs),
secure multiparty computation (SMPC)
[10], federated learning (FL), differential pri-
vacy (DP) [1], and blockchain [11] are the
most advanced methods [12] being
studied in secure omics data sharing,
storage, and the development of AI-
driven omics methods. However, the
majority of studies focus on the applica-
tion of a singular approach to specific
omics tasks. For example, formal pri-
vacy guarantees for the participants in
research on SNPs, genome-wide associa-
tion studies (GWASs), and differential gene
expression analysis were extensively
studied [13]. Limited work examines a
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Figure 1. Overview of patient privacy in artificial intelligence (AI)-driven omics methods: risks and solutions.
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combination of approaches to further en-
hance privacy protection for the develop-
ment of AI-driven omics methods. Recent
studies, like swarm learning [11] and
PPML-Omics [1], explore combinations
like FL with blockchain technology and
decentralized differential private FL algo-
rithms, respectively, to bolster the private
development of AI-driven omics methods.
Despite their potential, these methods
are not without trade-offs. Methods like
HE and blockchain-based strategies, as
seen in swarm learning, encounter a
trade-off between privacy protection
2 Trends in Genetics, Month 2024, Vol. xx, No. xx
and computational overhead. By con-
trast, SMPC and FL grapple with the
trade-off between communication over-
head and privacy protection. Methods in
the track of DP, such as PPML-Omics,
face a trade-off between privacy protec-
tion and the utility of AI-driven omics
methods. Therefore, reducing the cost
and achieving better privacy protection
is one of the main tasks in studies of
the patient privacy of AI-driven omics
methods. An additional noteworthy chal-
lenge pertains to safeguarding patients’
RTBF in the context of published AI-
driven omics methods. This is particularly
crucial for pretrained DL models, given
recent findings suggesting the potential
retention of substantial private information
by AI-driven omics methods [2]. Address-
ing these challenges is vital to ensure the
responsible and ethical advancement of
AI-driven methods in omics research.

To ascertain the efficacy of patient privacy
protection in the development of AI-driven
omics methods and safeguarding of the
RTBF against released AI-driven omics
methods, suitable privacy risk assessment
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methods are necessary. The delicate bal-
ance between privacy risks and potential
benefits must be thoroughly understood
to identify the most appropriate privacy
methods or policies to secure patient pri-
vacy in the context of AI-driven omics
methods. However, modeling privacy risk
is challenging and often contingent on
available information and the capabilities
of potential adversaries, such that few
studies have discussed this topic in biol-
ogy [6]. Recognizing that privacy protec-
tion and privacy attacks are integral
Table 1. Detailed scenarios and solutions using priva

Stage of development of
AI-driven omics methods

Attack

Data sharing Man-in-the-middle (MitM

Data breaches

Insider threats

Data linkage attack and
re-identification

DNA phenotyping

Pedigree analysis

Genotype imputation

Model training Data poisoning attacks

Gradient construction a

Model release Membership inference a

Model inversion attacks

Adversarial attacks

Inference data leakage
components of the same landscape, pri-
vacy attacks could be used to conduct a
privacy risk assessment to a certain ex-
tent. While this approach has been exten-
sively explored within the AI community in
recent years, particularly in the context of
adversarial attacks, model inversion at-
tacks, poisoning attacks, data poisoning
attacks, data extraction attacks, and
membership inference attacks [14], its ap-
plication to the domain of biology, espe-
cially in the context of patient omics data
[4,15], deserves more studies, as shown
cy technologies across three stages of AI-driven om

Privacy risk

) attack Intercepting communication between data
centers to steal or manipulate omics data

Unauthorized access to sensitive omics da
in databases

Malicious actions by authorized individuals
leading to omics data leakage or misuse

Combining seemingly anonymized omics
datasets enabling re-identification of
individuals

Prediction of physical traits, such as facial
features, hair color, and skin color, from DN
samples

Disclosure of sensitive family health
information or potential identification of
individuals through familial connections

Prediction of missing genetic variations in a
dataset and increased risk of re-identificatio
due to expanded genetic data

Injection of malicious data into omics
datasets leading to biased model training o
exposure of sensitive genetic information

ttack Exploitation of gradients to reverse enginee
or reconstruct sensitive input omics data

ttacks Determination of whether an individual’s
genomic data was used in the model’s
training process, leading to privacy breache

Extraction of sensitive genomic information
from trained models, compromising
individual privacy

Manipulation of model outputs to induce
misclassifications or extract sensitive
genomic information

Risk of input omics data being leaked when
using online inference services such as
Machine Learning as a Service (MLaaS)
in Table 1. Delving into the study of privacy
protection for patient’s omics data and
assessing the resilience of AI-driven
omics methods under various attack sce-
narios provides a promising avenue for fu-
ture research. Understanding how these
methods fare under the scrutiny of poten-
tial privacy attacks enables the refinement
and enhancement of privacy measures,
ensuring a more robust defense against
adversarial attempts to compromise pa-
tient privacy in the evolving landscape of
AI-driven omics research.
icsmethod development to protect patient privacy

Privacy solution

Encryption protocols or digital signatures

ta Controlled access

Restriction of access to sensitive data on a
need-to-know basis

Anonymization, DP, or k-anonymity
techniques to prevent re-identification from
linked datasets

A
Controlled access

Anonymization, pseudonymization, or
encryption techniques to safeguard privacy

n
Controlled access, encryption, or use of DP
techniques to mitigate the disclosure risk
associated with imputed genotypes

r
Encryption, SMPC, or FL approaches to
protect raw data during model training

r Employment of SMPC or FL for secure
gradient aggregation or DP for gradient
perturbation

s

Application of DP mechanisms to prevent
inference of membership in the training
dataset

Utilization of DP techniques to limit the
leakage of sensitive information from model
outputs

Training of robust models with adversarial
training techniques to resist adversarial
attacks

Implementation of encrypted online
inference techniques
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In recent years, there has been significant
progress in making AI-driven omics
methods more private and secure. Along-
side these technological advancements, it
is equally important to improve the rules
and guidelines that govern how we use
these technologies. By tackling both the
technical and the regulatory challenges re-
lated to privacy together, we can em-
power people to actively participate in
scientific research, ultimately improving
our understanding of omics and benefiting
medical research.
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