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A B S T R A C T 
 

Automated karyotyping is of great importance for cytogenetic research, as it spe

the process for cytogeneticists through incorporating AI-driven automated seg

tion and classification techniques. Existing frameworks confront two primary 

Firstly the necessity for instance-level data annotation with either detection bou

boxes or semantic masks for training, and secondly, its poor robustness partic

when confronted with domain shifts. In th is work, we first propose an accurat

mentation framework, namely  KaryoXpert. This framework leverages the stren

both morphology algorithms and deep learn ing models, allowing for efficient tr

that breaks the limit for the acquirement o f manually  labeled ground-truth ma

notations. Additionally, we present an accurate classification model based on 

learning, designed to overcome the challenges posed by inter-class similarity and

effects. Our framework exh ibits state-of-the-art performance with exceptional r

ness in both chromosome segmentation and classification. The proposed Karyo

framework showcases its capacity for instance-level chromosome segmentation e

the absence of annotated data, offering novel insights into the research for auto

chromosome segmentation. The proposed method has been successfully deplo

support clinical karyotype diagnosis. 

© 2024 Elsevier B. V. All rights re

1.  Introduction 
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Cytogenetics is a specialized field devoted to explori

intricate connection between chromosomal alterations a

netic diseases in humans. It involves the analysis of an in

ual’s chromosomes to identify structural or numerical 

malities that may be associated with various diseases. It 

vital role in genetic counseling, prenatal diagnosis, postn
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Netw ork Detection 
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Instance Masks 

illustration for morphology-based and detection-based frameworks for chromosome segmentation. (a). Morphology-based ch
 exhibits robustness in most scenarios but encounters diff iculties when dealing with overlapping chromosome segmentation. (b).

ntation excels in challenging segmentation tasks but may experience robustness issues when confronted with domain shifts. 

d genetic research. Some common genetic d isorders, 

own syndrome, Turner syndrome, Klinefelter syn- 

 cancers, can be diagnosed and studied through clin- 

netics. Karyotyping is one of the fundamental tech- 

 the gold standard in cytogenetic research. It offers 

o the number, size, shape, and structural integrity of 

al’s  chromosomes, enabling the detection of various 

malies. Following the sequential steps of colchicine 

ypotonic treatment, fixat ion, sectioning, and stain- 

ens are then subsequently examined through mi- 

etaphase images exh ibiting distinct chromosome 

 are systematically  enumerated, segmented, and cat- 

 compile a comprehensive karyotype report. In clin- 

e, metaphase chromosomes for noninvasive prenatal 

T) are p rimarily obtained from peripheral b lood. In  

ur primary focus is on metaphase chromosomes de- 

both peripheral b lood and amniotic flu id, which are 

he majority of prenatal testing. 

lin ical studies, cytogeneticists should manually se- 

phase images from more than 200 samples for chro- 

umeration. Five of these images will undergo fur- 

sing to generate one karyotype report. Despite ef- 

ftware solutions such as Ikaros Rose et al. (2019);  

 (2022), CytoVision Micci et  al. (2001); Yang et al. 

 ASI Hiband Fan  et al. (2000) to automate the pro- 

le  challenges still remain in  chromosome segmenta- 

ssification, including mask annotation requirements 

for chromosome segmentation, poor robustness again

shift, batch effects, and inter-class similarity fo r chro

classification. 

To tackle these challenges, in this paper, we propo
oXpert, an accurate chromosome segmentation and c

tion framework that efficiently  addresses the challen

above. The contributions can be summarized as follow

 
•  Train ing for KaryoXpert does not require man

beled metaphase-image-level mask annotations. 

duce a highly effective data simulation method

mented by a five-way segmentation stream. To

of our knowledge, this is the first segmentation fr

with high accuracy that is applicable without the

ment for manual mask annotation on metaphas

during training. 

 
•  KaryoXpert combines the advantages of mor

based, and deep-learning-based segmentation 

showcasing strong robustness and high precisio

multip le datasets during rigorous statistical benc

and clinical evaluation. 

 
•  We propose a metric-learn ing-based classificati

in KaryoXpert that eliminates the batch effect 

class similarity challenges caused by variant env

tal conditions. 

Morphology 

Algorithm 
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Annotation Requirement 

aryotype A Karyotype B 

 

 annotation challenges for automated karyotype analysis. The detection -based method requires comprehensive annotation in
for training, whereas KaryoXpert only relies on karyotype reports as training input. (b). Batch effect and inter-class similarity ch

me identification problem. 

ork 

ome Segmentation 

ce-level chromosome segmentation, there are 

types of segmentation frameworks, namely 

ased segmentation, and detection-based segmen- 

. Each of them possesses distinct strengths and 

der various scenarios: 

ext of morphology-based chromosome segmen- 

j et al. (2022); Minaee et al. (2014); Wu et al. 

it ial step involves binarization and contour detec- 

rves to distinguish chromosomes from the back- 

raj et al. (2022) employed curvature analysis tech- 

tify concave and convex points along the chromo- 

s, aiding in the separation of closely located chro- 

ilarly, Minaee et al. (2014) detected convex hull 

some clusters, and applied the sum of distances 

oints (SDTP) metric to segregate connected chro- 

 et al. (2020) employed the fast radial symme- 

sform on the original input images to obtain  seed 

en utilized the ring radius transform (RRT) for 

egmentation. The key advantage of morphology- 

s is their independence from the need for ground 

ons during training. However, they tend to exhibit 

scenarios involving densely packed chromosome 

cterized by instances where more than two chro- 

intricately connected and exhibit extensive over- 

The recently emerged detection-based chromosome se

tation framework Xiao et al. (2020);  Kang et  al. (2022

et al. (2015); Xie et al. (2019); A l-Kharraz et al. (2020

et al. (2022);  Saleh et al. (2019);  Tseng et al. (2023) lev

a deep neural network as a powerful backbone for object

tion, and showed improved detection accuracy on over

chromosomes. DeepACEv2 Xiao  et al. (2020), building

Faster R-CNN Ren et al. (2015), employed a Hard Ne

Anchors Sampling strategy with in its Reg ion Proposal N

(RPN) to enhance detection performance. Tseng et al. 

provided an open-source dataset with YOLOv4 Bochk

et al. (2020) as their detection backbone. While accura

tection with bounding boxes does not guarantee instanc

segmentation, since overlapping chromosomes will be f

into the same detection box. Furthermore, leverag ing 

RCNN He et al. (2017),  Xie et al. (2019),  and Al-K

et al. (2020) managed to conduct instance-level segme

on the meta-phase image. Their approaches were trained

extensive datasets comprising thousands of metaphase im

each meticulously annotated with instance-level chrom

masks. Lin  et al. (2021) utilized ResNeXt WSL (Weakly

vised Learn ing) to distinguish chromosomes from overla

touching, and clustered categories, however, this approa

not provide specific executable segmentation solutions.

based approaches Mei et al. (2022); Saleh et al. (2019) a

widely adopted for overlapping chromosome semantic  se

tation, while they are not instance-level and only focus o

Batch Effect 

【2】 【2】 

Inter-Cla ss 
Similarity 

【11】 【12】 

Metaphase 
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Annotation 
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Annotation 

image image 
KaryoXpert 

array array 

Detection-Based Method 
mplex situations, their segmentation often fails. 
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touching chromosome segmentation. Chromosome  

on remains a formidable challenge for algorithm de- 

nce obtaining instance-level mask annotations is  no- 

 challenging than acquiring raw metaphase images 

ype reports (see Fig. 2). Additionally, the limited 

 of publicly accessible datasets makes it d ifficult to  

sively evaluate the robustness of deep learning  mod- 

iverse datasets with notable domain shifts. 

osome Classification 

ome classificat ion is another specialized cytoge- 

ique. Typically, a healthy human somatic cell pos- 

al of 46 chromosomes, comprising 22 pairs of auto- 

1 pair of sex chromosomes (either XY or XX). Ac- 

tinguishing between those 24 classes requires sev- 

of training for proficient operators. Such differen- 

ased on chromosome characteristics such as length, 

 position,  the ratio  of long to short arms,  as well  

ome banding features. Therefore, manual chromo- 

ification in karyotype analysis is a time -consuming  

 task that heavily relies on expert knowledge. Over 

 years, there has been a pro liferat ion of computer- 

thods for chromosome classification, aimed at  alle- 

manual identification workload. The proposed clas- 

lgorithms are main ly morphology-based approaches 

l. (1995);  Ming and Tian (2010);  Abid and Hamami 

ani et al. (2005); Markou et al. (2012) and deep- 

sed approaches Xia et al. (2022); Xiao and Luo 

ferlach et al. (2020); Zhang et al. (2021); Wei et al. 

 et al. (2018); Jindal et al. (2017); Sharma et al. 

jen et al. (2022);  Sharma et al. (2018); Qin  et al. 

g et al. (2021). Band features, gray profiles, and 

les were utilized by Ming and Tian (2010) to con- 

tric classification and achieved 85.6 % accuracy in  

n. Markou et al. (2012) proposed a support vec- 

available datasets are rarely accessible due to p

sues. Whereas, no existing deep-learn ing-based 

can be trained without ground truth annotation

image. 

 
•  Robustness (Segmentation): Deep-learn ing-ba

mentation exhib its limited robustness when trans

metaphase images captured in diverse environme

ditions, or domain shift. On the other hand, mor

based segmentation algorithms are more robust, w

demonstrate low precision in scenarios involving

ping and closely touching chromosomes. 

 

•  Batch Effect (Classification): Chromosomes ex

nificant variations in length, banding depth, and 

from various batches of metaphase images. Such

can also be caused by taking metaphase images at

stages of cell d ivision, using different types of mic

under variant environmental conditions (Fig. 2). 

 
•  Inter-class Similarity (Classification): Chro

classification involves a detailed process in whic

similar chromosomes may exhib it only minor loc

ences that require careful comparison for differen

 
 

3.  Materials and Methods 

 

 
  Table 1. Data Statistics for 2 Benchmark Datasets 

  Dataset Attributes 

Number of Samples 1,500 

Banding G-Ban

Image Size 1360*

 (SVM) based classifier by extracting the chromo- 
al axes. In recent years, with the advances in con- 

neural networks (CNNs) and their applicat ions in 

lds, especially computer vision and medical imag- 

earn ing-based approaches have been widely  applied 

r-assisted chromosome recognition and demonstrate 

sification accuracy. Xiao and Luo (2021) proposed 

ased on a siamese network, incorporating a group 

ency loss for chromosome classification. Qin et al. 

 Vajen et al. (2022) emphasized the utilizat ion of 

ledge to reassign prediction labels derived from 

nal neural networks (CNNs). KaryoNet Xia et al. 

 the other hand, enhanced prediction accuracy by 

global contextual in formation through the innova- 

d Feature Interaction Module (MFIM). The above- 

studies highlight the critical challenges  encountered 

d chromosome segmentation and classification pri-  

centrated in the following aspects: 

ation Requirements (Segmentation): Training an 

Ikaros Dataset 

(in-House) 

 

 
 
 

 
 

 
 

Tseng Dataset 

(Public) 

Tseng et al. (2023) 

Resolution 63X 

Data Source Shang

Xinhu

pital 

Image Format TIF 

Detection Annotations 1,500 

Mask Annotations 1,500 

Karyotype Reports 1,500 

Number of Samples 5,000 

Banding G-Ban

Image Size Variou

Resolution 13X 

Data Source Taich

Vetera

Gener

Hosp

Image Format JPG 
Detection Annotations 5,000 

Mask Annotations N/A 

ce-level segmentation network requires mask anno-   Karyotype Reports N/A 
 on thousands of metaphase images (Fig. 2). Publicly 
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Single Chromosome 

entation 

Training： 
simulation 

Inference： 

Metaphase Image 

 

 

 

 
Noise 

 

1 

Pure Noise 

 

3 

 
Chromosome 

Attached 

 

 
 

  
 

 

Single Chromosome 

 

 
 

 

 

 
Merge 

Contour 

Separation 

Chromosome 

 

 

 
single/multi-attached 

Separation 

4 
Segm 

Attached Chromosome Single Chromosome 

Fig. 3. The detailed structure for the five-way segmentation stream and the data simulation process of KaryoXpert. 

 and Imaging Protocol 

d 2 datasets for automated chromosome segmen- 

ssification. In  the Ikaros Dataset, we co llected 

 metaphase images sourced from 605 patients  be- 

nd 2023 in Shanghai Xinhua Hospital, China. 

ase images were captured by CoolCube 1 cam- 

tems, Germany) attached to the AXIO IMAGER 

rl Zeiss, Germany), and subsequently exported to 

tem (MetaSystems, Germany). Each metaphase 

ataset is thoughtfully paired with its correspond- 

me mask annotation, delineating the boundaries 

osomes, and accompanied by a karyotype report 

tion labels. Additionally, we have categorized the 

ted into two distinct groups: one from peripheral 

 other from amniotic fluid. 

icly available Tseng Dataset Tseng et al. (2023), 

 metaphase images are collected from prenatal 

 studies conducted between 2014 and 2021 at the 

aboratory, Department of Women’s Medicine, 

erans General Hospital. However, it is important 

ask annotations are not availab le for this dataset. 

nstance-level segmentation evaluation and chro- 

ificat ion assessments cannot be performed on the 

, primarily due to the potential presence of over- 

osomes within bounding boxes. Detailed dataset 

be referred to Table 1. To validate the models’ 

from the Ikaros dataset. We directly tested the remainin

samples from the Ikaros dataset and applied them to 50

samples of the Tseng dataset. 

 

3.3 .   Instance-Level Chromosome Segmentation w

trained with manually labeled Mask  Annotations 

3.2 .1 .  Contour Separation 

The initial stage of our proposed method lev

morphology-based contour separation (first step Fig. 3

process utilizes a watershed transform Vincent and 

(1991); Beucher (1979) after applying binarization t

metaphase images with a specified threshold. We then

inate contours that fall below a certain size threshold.

an approach ensures the robustness of our model across  

metaphase image environments. This transformation effe

breaks down the raw metaphase image into manageabl

ponents, which are subsequently channeled into the fiv

segmentation stream. 

 

3.2 .2 .  Five-Way Segmentation Stream 

Utilizing a divide-and-conquer methodology, we pa

the entire segmentation stream into five trainable models

amenable to train ing with pure data simulation (see F

Firstly, we employ three binary classifiers for the init ia

ration of contour elements into four distinct categories: 

01  i s de dic at ed to cl assi f yin g co nto urs co nsist in g of p ur

2 

5 
Segmentation 

Simulated Cluster Chromosomes with Mask Annotations 

Single Chromosomes 

2 4 

1 
 
Noise 

Simulated Noise overlapped Chromosomes 

with Mask Annotations 

3 
5 

Binary Classification Model: 1 2 3 Segmentation Model: 4 5 
e conduct the training process on 1,400 samples mosomes (either single or attached) from background noise. 
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Banding Feature 

Extraction 
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Fig. 4. Detailed Structure of the training process for the Deep Metric Learning framework for chromosome classification. 

o cu se s on dist in guis hing sin gl e ch ro m os o m es fro m  

vin g m ul t iple co nn e ct ed c hr o m oso m e s. Mo d el  03  is  

 in isolating noise reg ions that are attached to chro- 

o m pur ely noisy re gion s. A fte r w ar d, M o d el04  func-  

etection-based segmentation network, to further dis- 

hromosome clusters into single ones. Meanwhile,  

s d esig ne d wi th th e ext r a ct io n of ch ro m os o m es that  

ed with noise—a notably challenging  scenario in  our 

t necessitates careful consideration. 

 Simulation 

iously  ment ioned  five-way  segmentat ion  stream is 

trained in a pure s imulat ion fo rmat (Fig. 3 upper  

u iring  only  raw metaphase images  and  their corre-  

a ry oty p e re p orts.  In M o d el  01 , w e m a nu al ly a nno-  

nstances o f no ise that appeared  in  metaphase im-  

asting  them with  chromosomes ext racted from the 

e po rts.  Fo r m od el  02 03 , w e e m plo y ed a ” c op y and  

odology to generate attached chromosomes, vary- 

3.4 .  Deep Metric Learning with Triplet Loss 

 
Previously, we mentioned that the major challenges

mated chromosome classification lie in data insufficien

class similarity, and batch effect. Here we propose a

some classification method based on deep metric lear

is trained with predefined triplet loss to effectively ta

challenges. 

In Fig. 4, a feature mapping network ( f ) is firstly de

learn a mapping from the o rig inal input chromosome

a low-d imensional dense embedding space. The feat

ping network consists of two components: The first

ploys a convolutional neural network to extract and c

ize features from the input chromosome image, transla

tial in formation into vectors. The second part condu

ing extraction on the original chromosome image to 

banding feature vector. These two vectors are then

nated and ultimately  transformed into a 128-d imensi

tor space: x = (x1, x2, x3, ..., x128). Such embedding 

normalized into (0-1) range under Equation (1). 

    xi − µ  
ber of chromosomes, rotations, and flipping condi- 

mly. A ll images are normalized to 256 256 before 

 the deep-metric learning network. The simulated 

xl
∧ 
= J

(σ2) + ϵ 
, (i ∈ [1, 128]) 

btained  accord ing  to  their counters relat ive to  the 

d . Utilizing  the data generated  from these previous 

s, we also obtained  the corresponding  chromosome  

ich  were subsequently ut ilized  to t rain  the segmen-  

or ks f or M o del  04  an d M od el  05 .  O v er al l ,  w e ex-  

roximately 60,000 sing le chromosome images and 

e samples from 1,500 karyotypes. Ut ilizing these, 

le to generate around 100,000 s imulated overlapped  

es, accompanied with instance masks, for the train- 

, where µ and σ are the mean and standard deviatio

batch, and ϵ is an arb itrarily s mall constant added to th

inator to ensure numerical stability. Subsequently, a

function is formulated to ensure that similar chromos

hibit relatively narrow distances from each other, wh

jects of distinct classes exh ibit  relatively  expanded d

With previously calculated feature vectors, we emplo

similarity to quantify the distances between pairs of fea

tors. Take vecto rs 
→−
A 1×128 , and 

→−
B1 ×128 as exam ple s. The 

chr22 chr22 

Negativ e 

Sample 

chr1 

Positiv e 

Sample 

,…., 
chr1 

chr1 
Batch/Sample 

shooting 

env ironment 

chr1 

Anchor 

T
rip

le
t L

o
s
s
 F

u
c
tio

n
 

l 04  and Model 05 . distance is calculated in Equation 2 
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∈ 

  

  

 

 

 

Cos(A, B) = 

→−
A ·

→−
B
 

|
→−
A | · |

→−
B| 

 
(2) 

Xia et al. (2023), and classical classification backbones

as ResNet50 He et al. (2016), EfficientNetV2 Tan a

(2021), ConvNeXt Liu et  al. (2022), and Vision Trans

(ViT)Dosovitskiy et al. (2020). All models are fine-tune

 is the inner produ ct of the two 128-dim e n sion al 

 , 
→−
B  repre se nt thei r modu les. 

efine the triplet with 3 samples: Anchor (x), 

and Negative(x−) sample. Positive samples are 

 of the same category with anchor, although they 

 from different batches. Negative examples con- 

somes from d ifferent categories. With the triplet, 

 triplet loss  function: 

+, x−) = max(0, || f − f +|| − || f − f −|| + m) (3) 

ture mapping network), m (margin) is a constant 

ro. Our ult imate optimization object ive is to min- 

nce between x and x+ while  simultaneously max- 

stance between x and x−. In our specific case, we 

, m, to 0.2. Detailed exp lanations for triplet loss 

in Supplementary Materials. 

tation Details 

k  Training 

der the same chromosome identification  dataset from the

dataset with torchvision v0.15 Marcel and Rodriguez 

pre-trained weights. 

 
4.  Experiments 

4.1 .  Evaluation Metrics 

Segmentation: In the evaluation of chromosome seg

tion at the instance level, we ut ilize the Average Precisio

metric across various IoU thresholds, specifically AP@0

mAP(AP@0.5:0.95), with reference to both ground tru

mentation masks (Seg) and bounding boxes (BBox). Thi

uation is conducted using the COCO instance segmentati

Lin et al. (2014). It offers a comprehensive assessmen

model’s ability to detect objects across different scales

an image. IoU, or Intersection over Union, serves as a m

to estimate how well the algorithm’s predictions align w

actual regions of interest for objects in  an image, as defi

the Equation (4): 

  are traine d with ResN e t50 H e et al. (2016 ) net- 

ture, with fully connected layers for binary clas- 
IntersectionoverUnion(IoU) = 

IntersectionArea
 

Union Are a 
rporated into the architecture. During the train- 

ata augmentation techniques such as random ro- 

, scaling, and color jittering are systematically  

Then we are able to calculate Precisionseg and Recalls

Equation 5 based on various IoU thresholds: 

ersi f y the datase t .   Model 04  and 05  are train ed 

v7 Wang et al. (2023) network architecture with 

c data. We select the Yolo family backbone due  

e detection speed and flexib ility. Th is versatil-  

at KaryoXpert can be utilized in a wide range of 

Recallseg =
  TP 

 

TP + FN 

Precisionseg  =
    TP 

 
TP + FP 

from cloud-based solutions to personal computer 

etailed train ing parameters can be found in Sup- 

aterials. 

arks 

where TP, FN, and FP stand for true positives, false neg

and false positives under a certain IoU threshold [0.5,
Then, AP can be calcu lated from 11 points from the Prec

Recall curve from levels of [0, 0.1, 0.2,...,1] under Equat

tation, all models are trained using the training AP =
 1 

 Precision(Recalli) 
os dataset and evaluated against its test set to es- 

marks. Additionally, to assess their robustness, 

e directly applied to the test subset of the Tseng 

ut further adaptation. Due to concerns related to 

nd ethical approval, few chromosomal segmen- 

s are publicly available for head-to-head com- 

efore, we ext racted the segmentation backbone 

of-the-art (SOTA) algorithm Xie et al. (2019);  

2023) and conducted detailed statistical evalua- 

on-based frameworks of MaskRCNN He et al. 

11 
r∈0,0.1,...1 

We also report the Average Recall (AR@IoU0.5:0.95

for each benchmark, which provides an overall assessm

the model’s ability to recall objects across various scales

Enumeration: For stability analysis, we conduct met

image chromosome enumeration across two datasets. 

ent from instance-level segmentation, the evaluation crite

Accuracy (Acc) and Average Error Rat io (AER), which 

fined under Equation 7: 

one of Xie et al. (2019)), Yolov4 (Backbone of 

023)), Yolov7 Wang et al. (2023), YOLACT Acc = 
k TPk 

 

k (TPk + FPk + FNk) 
019), and SOLO Wang et al. (2020) are t rained 

e training set from the Ikaros dataset with Open 

ction Toolbox Chen et al. (2019). 

AER = 
k (FPk + FNk) 

 

k (TPk + FNk) 

cation, we benchmarked with the state-of-the- , where True Positive (TPk) is defined as the instance wh
romosome classification algorithm KaryoNet predicted bounding box is correctly matched to a ground truth  



Journal Pre-proof

8 
 

 

 

 

Fig. 5. Intuit r zoom-in 

region is sho

 

bounding b

(0.5 in this 

bounding b

IoU thresh

truth that is

We also

Whole Cor

of 100% co

metric is ca

number of 

and FPk = 

Classific

both Accur

assess the 

top-5 predi

 
4.2 .  Instan

mance

In this se

level metap

sets from t

formance u

sion (AP) a

detection-b

Table 2 p

tably, when

dataset, it’s

entirely sim

gorithms 

tive adap- 

lgorithms 

onstrate 

rage pre- 

strated a 

l relevant 

achieving 

d 81.8% 

s (Tseng 

l. (2019);  

ue to do- 

ain shift 

rned fea- 

. Regard- 

l, KaroX- 

ness with 

 noticing  

 dataset, 

ed on this 

ot appli- 

m Tseng 

ithm ex-  

ntours, it  

ling with  

 

B

Jo
ur

na
l P

re
-p

ro
of

Siyuan Chen et al. / Computers in Biology and Medicine (2024) 

− 

Ground Truth Maskrcnn-r50 (Xie et al. 2019) Maskrcnn-r101 YOLOv4 (Tseng et al. 2023) KaryoXpert (Ours) 

 

ive segmentation performance of KaryoXpert and multiple benchmarks on the Ikaros (a) and Tseng (b) test samples. A particula

wn on challenging areas exhibiting overlapping and touching chromosomes. 

ox in the k th image over a g iven IoU threshold 

study). False Positive  (FPk) denotes that a predicted  

ox does not have a matched ground truth above the 

old. False Negative (FNk) here denotes the ground 

 not detected by any predicted bounding box. 

 include a rather strict enumeration metric, named 

rect Ratio (WCR). It is calculated as the percentage 

rrect enumeration across the whole testing set. The 

lculated as the ratio N+/N, where N+ represents the 

ground truth samples correctly identified (FNk=0,  

0), and N is the size of the test set. 

ation: For a comprehensive evaluation, we employ 

acy @1 and Accuracy @5 metrics. The two metrics 

proportion of instances in which either the top-1 or 

ction results correctly match the ground truth label. 

ce-Level Metaphase Image Segmentation Perfor- 

 

ction, we present a comparat ive analysis of instance- 

hase image segmentation performance on the test 

wo distinct datasets. Initially, we assess the per- 

sing metrics such as bounding box average preci- 

nd segmentation average precision (AP), within a 

ased framework. 

rovides a summary of the segmentation results. No- 

 examining KaryoXpert’s  performance on the Ikaros 

 important to note that KaryoXpert  was trained using 

with 71.9% segmentation mAP, compared with al

trained with paired  mask annotations. Due to the effec

tation and beneficial overfitting, detection-based a

(MaskRCNN ResNet-101+RPN He et al. (2017)) dem

good performance in terms  of segmentation mean ave

cision (mAP). In terms of recall, KaryoXpert demon

strong ability to accurately identify and capture al

positive chromosomes within the metaphase image, 

85.3% in bounding box mean average recall (mAR) an

in segmentation mAR. 

On the other hand, when tested on different domain

dataset), existing detection-based methods Xie et a

Tseng et al. (2023) faced huge performance drops d

main shifts under dataset variations (Fig. 5). This dom

can lead to a lack of model generalization, as the lea

tures may  not be direct ly applicable  to  the new dataset

ing the bonding-box mean  average precision and recal

pert demonstrates state-of-the-art segmentation robust

60.2% mAP and 71.5% mAR (Table 2). It is worth

that mask annotations are not available for the Tseng

therefore no segmentation evaluations can be conduct

dataset. Furthermore, segmentation evaluation is also n

cable to the Yolov4 object detection engine applied fro

et al. (2023). 

While the morphology-based segmentation algor

hibits robustness in its init ial step of separating the co

demonstrates lower segmentation precision when dea

a) 

iKaros 

18-067 0 

b) 

Tseng 

110056 2 
ulated data, we showed 79.9% bonding box mAP overlapping and touching chromosomes . Fig. 6 is an illustra- 
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Dataset 
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0.555 
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mance Metrics of KaryoXpert and benchmarks on the test sets of 2 datasets are presented for both bounding box and segmentatio

P refers to mean average precision@IoU0.5:0.95, mAR refers to mean average Recall@IoU0.5:0.95 

. 

Mask Ann AP@ 0.5  mAP 

  Convex Hull Watershed KaryoXpert 
Devaraj et al. (2014)， 

 
  Table 3.  Stability Analysis on Chromosome Enumeration

Minaee et al (2022) 
WCR AER 

  

ntation performance of KaryoXpert compared with 
sed algorithms. 

erlapping situations regarding touching (1st row), 

nd row), and chromosome clusters (3rd row). We 

 segmentation performance with the convex-hull- 

m Minaee et al. (2014) and watershed-based al- 

nt and Soille (1991); Devaraj et al. (2022). The 

ased algorithm effectively handles simple  scenar- 

s than three chromosomes are present without 

owever, in the presence of mult iple overlapping 

ularly in cases involving clusters, the morphology 

ruggle to provide accurate segmentation results. 

lapping variances and resource consumption can 

 

  KaryoXpert 33.51 13.28 

 

 

 
4.3 .  Stability Analysis in Chromosome Enumeration 

Table 3 presents the stability analysis of KaryoXpert 

various benchmarks. Given the fact that deep-learning m

are quite sensitive to domain shift during cross -datase

ferring, existing approaches experience a notable perfor

drop in WCR(%).  Th is effect is further illustrated in 

5, where an increase in false negatives (FN) is more pr

due to domain shift. Owning to a sophisticated algorithm

sign that combines the strengths of morphological algo

and deep-learning neural networks, KaryoXpert demon

state-of-the-art stability and robustness performance com

to previous works. It notably decreased the Average Erro

(AER%) to 8.08% on the iKaros dataset and further redu

Dataset Method 
(%) ↑ (%) ↓ 

Xie et al. (2019) 25.0 12.89 

MaskR -CN N -R10 1 41.0 9.27 

Ikaros 
YOLACT-R50 25.0 13.06 

Dataset 
SOLO-R50 18. 0 27.41 

Tseng et al. (2023) 17.0 25.84 

YOLOv7 34.0 14.3 

KaryoXpert 62.0 8.08 

Xie et al. (2019) 7.31 40.89 

MaskR -CN N -R10 1 13.98 30.07 

Tseng 
YOLACT-R50 15.95 17.57 

Dataset 
SOLO R50 12.68 42.43 

Tseng et al. (2023) 10.6 48.75 

YOLOv7 31.91 34.69 

 

Method 
Train w/  BBox BBox BBox 

mAR 
Seg 
AP@0.5 

Seg 
mAP 

Mask R-CNN Xie et al. (2019) Y 0.988 0.789 0.829 0.978 0.622 

Mask R-CNN ResNet-101+RPN Y 0.988 0.812 0.842 0.978 0.746 

YOLACT ResNet-50 Y 0.901 0.707 0.652 0.896 0.505 

set SOLO ResNet-50-1x Y 0.752 0.563 0.638 0.807 0.525 

) YOLOv4 Tseng et al. (2023) Y 0.726 0.448 0.548 - - 

YOLOv7 Y 0.731 0.454 0.554 0.786 0.468 

KaryoXpert N 0.982 0.799 0.853 0.962 0.719 

Mask R-CNNXie et al. (2019) Y 0.783 0.420 0.498 - - 

Mask R-CNN ResNet-101+RPN Y 0.829 0.470 0.555 - - 

aset 
YOLACT ResNet-50 Y 0.752 0.456 0.538 - - 

) 
SOLO ResNet-50-1x Y 0.728 0.313 0.429 - - 

(2023) 
YOLOv4 Tseng et al. (2023) Y 0.564 0.256 0.290 - - 

YOLOv7 Y 0.664 0.286 0.365 - - 

KaryoXpert N 0.863 0.602 0.715 - - 
pplementary Materials. to 13.28% on the Tseng dataset. 
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1 RPN 

osome Classification  
  Table  6. Classification Inference Runtime & GPU Memory Co

 
formance Metrics of KaryoXpert on the classification. Karyo- 

Inference Runtime 

(per 100 reports) 

GP

M

. (2023) takes 46 images as input, therefore no Acc@5 can be 

 

Methods Acc@1 Acc@5 

ataset ConvNeXt 0.9497 0.9946 

use) ViT 0.9533 0.9943 
Xia et al. (2023) 0.9680 - 

KaryoXpert 0.9706 0.9963  

 evaluated the quantification performance of deep- 

sed chromosome recognition methods in contrast to 

ed deep-metric learning framework integrated within 

t. The benchmark algorithm consists of SOTA chro- 

lassification algorithm KaryoNet Xia et al. (2023), 

ndard classification backbones: ResNet50 He et al. 

icientNetV2 Tan and Le (2021), ConvNeXt Liu et al. 

d Vision Transformer (ViT) Dosovitskiy et al. (2020). 

ayed in Table 4, we computed identification accuracy 

p-1 and top-5 predictions for the 24 potential G-band 

e classes. All models demonstrate satisfactory per- 

above 90% in Acc@1, and Acc@5) when provided 

equate number of training samples.  Different from 

d learning algorithm, deep metric learning acquires 

 about the internal connections and class distribution 

tics of chromosomes within a karyotype report, lead- 

proved classification performance of 97.06% on the 

e and Resources Comparison 

 

ResNet50 16.1 sec 1,

EfficientNetV2 19.2 sec 1,

ConvNeXt 15.2 sec 1,

ViT 15.1 sec 1,

Xia et al. (2023) 75.4 sec 9,

  KaryoXpert 14.4 sec 1,

 
detection-based framework. Nevertheless, it still deliv

bust and precise segmentation result within  1 second,

less than 2 GB of GPU memory. One clear conclusio

drawn regard ing the prediction time fo r KaryoXpert’s

tation: it  ensures robustness and delivers satisfactory s

tion performance while providing a good tradeoff betw

diction time and the availability of training annotation

other hand, in chromosome classification, due to the

KaryoNet Xia et al. (2023) incorporates global infor

its prediction process. As a result, it contributes to a 

tively slower inference speed for chromosome classifi

4.6 .  Training Efficiency Analysis 

Table 7 presents an efficiency analysis of the trai

cess for the proposed KaryoXpert and benchmark 

comparing both training duration  and GPU memory ut

The benchmark Vision Transformer necessitates appr
11.5 GPU hours and approximately 7GB of GPU me

training. In  contrast, the proposed KaryoXpert consu

amount of GPU memory and approximately 1.6 GPU 

model training. 

 
Table 7. Classification Training Time Comparison

mentation Inference Runtime & GPU Memory Comparison  Methods 
Parameter Training G

Inference Run-time 

per image 

GPU 

Memory 

    Size Time 

ResNet50 22.4M 6.5h 

NN Xie et al. (2019) 0.325 sec 4,819Mb 

NN 
0.395 sec 4,385Mb 

+ 

 ResNet-50 0.580 sec 8,100Mb 

sNet-50-1x 0.523 sec 5,413Mb 

Tseng et al. (2023) 0.191 sec 1,874 Mb 

0.232 sec 2,225Mb 

EfficientNetV2 19.27M        7.3h 

ConvNeXt 47.18M        13h 

ViT 81.84M        11.5h 

Xia et al. (2023)         28.19M        12h 

  KaryoXpert 1.14M 1.6h 

rt 0.916 sec 1,439Mb 4.7. Clinical Evaluation 

se Image ≈7.2 sec (Production Time)  

 crucial criterion for autonomous karyotyping is the 

ime and computational efficiency. As indicated in  

 6, a karyotyping system must generate automated 

on results within  a 7-second timeframe, parallel with 

tion time of the metaphase image. Detection-based 

s exh ibit rapid in ference speed but consume sub- 

mory. Since KaryoXpert conducts a five-way seg- 

In order to evaluate the clinical value of KaryoXp

segmentation process, we invited a h ighly experienc

geneticist with more than 10 years of karyotyping e

from Shanghai Xinhua Hospital to give the clin ica

tion for the segmentation results. In this evaluation, 

ously examined the segmentation outcomes by random

ing 20 samples derived from metaphase images sour

both peripheral b lood and amniotic fluid. The aim wa

front KaryoXpert’s  segmentation results with a met icu

Methods 

ResNet50 0.9476 0.9957 

EfficientNetV2 0.9591 0.9946 
stream, its inference time is longer than that of the ical perspective, setting an extremely rigorous criterion where 
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ation that exhibited a 100% correspondence with 

ruth was deemed true positives. We report the 

tion for KaryoXpert, MaskRCNN-R101He et  al. 

mmercial software  Ikaros V5.5.10 (MetaSystems 

et al. (2019); Vajen et al. (2022) in  their segmenta- 

ely. The results of th is evaluation are summarized 

e results illustrate that KaryoXpert outperforms 

0 by enhancing segmentation performance by ap- 

0% in precision, and 50% in  recall. Furthermore, 

ive rate has been effectively reduced to nearly 4%, 

ccelerat ing the CRUD (Create, Delete, Read, Up- 

 through the utilization of KaryoXpert. 

l evaluation on the Ikaros Dataset separately for peripheral 
otic fluid samples, FPR stands for False positive rate  
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eliminates the need for manually annotated ground truth instance masks during 

training. 

 

 Advantages from both morphology algorithm and deep-learning model are merged, 

which guarantees KaryoXpert has strong robustness and high segmentat ion 

accuracy across multiple datasets that bear domain shift. 

 

 Metric learning-based chromosome classification is proposed to enable a more 

accurate chromosome recognition, effectively reducing the impact of batch effects, 

domain shift, and inter-class similarity. 

 

 GPU acceleration enables real-time inference with cutting-edge clinical accuracy 

on real-world clinic cytogenetic samples. 

 

 

 

In contrast to conventional karyotyping methods relying heavily on mask 

annotation, our methodology integrates a novel fusion of deep learning and 

morphological algorithm. This innovative fusion enables mask-free training, 

enhancing model robustness, and boost segmentation and classification accuracy. 

Our experiments on real-world NIPT datasets showcase a remarkable 20% 

improvement in clinical evaluation compared with existing methods, showing the 

potential clinical impact of our innovative approach in aiding diagnosis and 

treatment planning in cytogenetic imaging 
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