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Automated karyotyping is of great importance for cytogenetic research, as it speeds up
the process for cytogeneticists through incorporating Al-driven automated segmenta-
tion and classification techniques. Existing frameworks confront two primary issues:
Firstly the necessity for instance-level data annotation with either detection bounding
boxes or semantic masks for training, and secondly, its poor robustness particularly
when confronted with domain shifts. In this work, we first propose an accurate seg-
mentation framework, namely KaryoXpert. This framework leverages the strengths of
both morphology algorithms and deep learning models, allowing for efficient training
that breaks the limit for the acquirement of manually labeled ground-truth mask an-
notations. Additionally, we present an accurate classification model based on metric
learning, designed to overcome the challenges posed by inter-class similarity and batch
effects. Our framework exhibits state-of-the-art performance with exceptional robust-
ness in both chromosome segmentation and classification. The proposed KaryoXpert
framework showcases its capacity for instance-level chromosome segmentation even in
the absence of annotated data, offering novel insights into the research for automated
chromosome segmentation. The proposed method has been successfully deployed to
support clinical karyotype diagnosis.

© 2024 Elsevier B. V. All rights reserved.
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1. Introduction

Cytogenetics is a specialized field devoted to exploring the
intricate connection between chromosomal alterations and ge-
netic diseases in humans. It involves the analysis of an individ-

** Co-Corresponding author: Yongguo Yu, Xin Gao ual’s chromosomes to identify structural or numerical abnor-
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malities that may be associated with various diseases. It plays a
vital role in genetic counseling, prenatal diagnosis, postnatal di-
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Fig. 1. Brief illustration for morphology-based and detection-based frameworks for chromosome segmentation. (a). Morphology-based chromosome
segmentation exhibits robustness in most scenarios but encounters difficulties when dealing with overlapping chromosome segmentation. (b). Detection -

based segmentation excels in challenging segmentation tasks but may e xperience robustness issues when confronted with domain shifts.

agnosis, and genetic research. Some common genetic disorders,
including Down syndrome, Turner syndrome, Klinefelter syn-
drome, and cancers, can be diagnosed and studied through clin-
ical cytogenetics. Karyotyping is one of the fundamental tech-
niques and the gold standard in cytogenetic research. It offers
insights into the number, size, shape, and structural integrity of
an individual’s chromosomes, enabling the detection of various
genetic anomalies. Following the sequential steps of colchicine
treatment, hypotonic treatment, fixation, sectioning, and stain-
ing, specimens are then subsequently examined through mi-
croscopy. Metaphase images exhibiting distinct chromosome
boundaries are systematically enumerated, segmented, and cat-
egorized to compile a comprehensive karyotype report. In clin-
ical practice, metaphase chromosomes for noninvasive prenatal
testing (NIPT) are primarily obtained from peripheral blood. In
this study, our primary focus is on metaphase chromosomes de-
rived fromboth peripheral blood and amniotic fluid, which are
utilized in the majority of prenatal testing.

During clinical studies, cytogeneticists should manually se-
lect 20 metaphase images from more than 200 samp les for chro-
mosome enumeration. Five of these images will undergo fur-
ther processing to generate one karyotype report. Despite ef-
forts by software solutions such as Ikaros Rose et al. (2019);
Vajen et al. (2022), Cyto Vision Micci et al. (2001); Yang et al.
(2010), and ASI Hiband Fan et al. (2000) to auto mate the pro-
cess, multiple challenges still remain in chromosome segmenta-
tion and classification, including mask annotation requirements

for chromosome segmentation, poor robustness againstdomain
shift, batch effects, and inter-class similarity for chromosome
classification.

To tackle these challenges, in this paper, we propose Kary-
oXpert, an accurate chromosome segmentation and classifica-
tion framework that efficiently addresses the challenges listed
above. The contributions can be summarized as follows:

« Training for KaryoXpert does not require manually la-
beled metaphase-image-level mask annotations. We intro-
duce a highly effective data simulation method, comple-
mented by a five-way segmentation stream. To the best
ofour knowledge, this is the first segmentation framework
with high accuracy that is applicable without the require-
ment for manual mask annotation on metaphase images
during training.

+ KaryoXpert combines the advantages of morphology-
based, and deep-learning-based segmentation methods,
showcasing strong robustness and high precision across
mu Itip le datasets during rigorous statistical benchmarking
and clinical evaluation.

« We propose a metric-learning-based classification model
in KaryoXpert that eliminates the batch effect and inter-
class similarity challenges caused by variant environmen-
tal conditions.
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Fig. 2. (a). Data annotation challenges for automated karyotype analysis. The detection-based method requires comprehensive annotation inwolving
instance masks for training, whe reas KaryoXpert only relies on karyotype reports as training input. (b). Batch effect and inte r-class similarity challenges

in the chromosome identification problem.

2. Related Work

2.1. Chromosome Segmentation

For instance-level chromosome segmentation, there are
mainly two types of segmentation frameworks, namely
morphology-based segmentation, and detection-based segmen-
tation (Fig 1). Each of them possesses distinct strengths and
limitations under various scenarios:

In the context of morphology-based chromosome segmen-
tation Devaraj et al. (2022); Minaee et al. (2014); Wu et al.
(2020), the initial step involves binarization and contour detec-
tion, which serves to distinguish chromosomes from the back-
ground. Devaraj etal. (2022) emp loyed curvature analysis tech-
niques to identify concave and convexpoints along the chromo-
some contours, aiding in the separation of closely located chro-
mosomes. Similarly, Minaee et al. (2014) detected convexhull
within chromosome clusters, and applied the sum of distances
among total points (SDTP) metric to segregate connected chro-
mosomes. Wu et al. (2020) employed the fast radial symme-
try (FRS) transform on the original input images to obtain seed
points, and then utilized the ring radius transform (RRT) for
overlapping segmentation. The key advantage of morphology -
based methods is their independence from the need for ground
truth annotations during training. However, they tend to exhibit
limitations in scenarios involving densely packed chromosome
clusters, characterized by instances where more than two chro-
mosomes are intricately connected and exhibit extensive over-
lap. In such complex situations, their segmentation often fails.

The recently emerged detection-based chromosome segmen-
tation framework Xiao et al. (2020); Kang et al. (2022); Ren
et al. (2015); Xie et al. (2019); Al-Kharraz et al. (2020); Mei
etal. (2022); Saleh et al. (2019); Tseng et al. (2023) leveraged
a deep neural network as a powerful backbone for object detec-
tion, and showed improved detection accuracy on overlapped
chromosomes. DeepACEv2 Xiao et al. (2020), building upon
Faster R-CNN Ren et al. (2015), employed a Hard Negative
Anchors Sampling strategy within its Region Proposal Network
(RPN) to enhance detection performance. Tseng et al. (2023)
provided an open-source dataset with YOLOv4 Bochkovskiy
et al. (2020) as their detection backbone. While accurate de-
tection with bounding boxes does not guarantee instance-level
segmentation, since overlapping chromosomes will be framed
into the same detection box Furthermore, leveraging Mask-
RCNN He et al. (2017), Xie et al. (2019), and Al-Kharraz
et al. (2020) managed to conduct instance-level segmentation
on the meta-phase image. Their approaches were trained using
extensive datasets comprising thousands of metaphase images,
each meticulously annotated with instance-level chromosome
masks. Lin etal. (2021) utilized ResNe Xt WSL (Weakly Super-
vised Learning) to distinguish chromosomes from overlapping,
touching, and clustered categories, however, this approach did
not provide specific executable segmentation solutions. UNet-
based approaches Mei et al. (2022); Saleh et al. (2019) are also
widely adopted for overlapping chromosome semantic segmen-
tation, while they are not instance-level and only focus on over-
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lapping or touching chromosome segmentation. Chromosome
segmentation remains a formidable challenge for algorithmde-
velopers since obtaining instance-level mask annotations is no-
tably more challenging than acquiring raw metaphase images
and karyotype reports (see Fig. 2). Additionally, the limited
availability of publicly accessible datasets makes it difficult to
comprehensively evaluate the robustness of deep learning mod-
els across diverse datasets with notable domain shifts.

2.2. Chromosome Classification

Chromosome classification is another specialized cytoge-
netic technique. Typically, a healthy human somatic cell pos-
sesses a total of 46 chromosomes, comprising 22 pairs of auto-
somes and 1 pair of sexchromosomes (either XY or XX). Ac-
curately distinguishing between those 24 classes requires sev-
eral years of training for proficient operators. Such differen-
tiation is based on chromosome characteristics such as length,
centromere position, the ratio of long to short arms, as well
as chromosome banding features. Therefore, manual chromo-
some identification in karyotype analysis is a time-consuming
and tedious task that heavily relies on expert knowledge. Over
the past few years, there has been a proliferation of computer-
assisted methods for chromosome classification, aimed at alle-
viating the manual identification workload. The proposed clas-
sification algorithms are mainly morphology-based approaches
Lerneret al. (1995); Ming and Tian (2010); Abid and Hamami
(2018); Biyani et al. (2005); Markou et al. (2012) and deep-
learning based approaches Xia et al. (2022); Xiao and Luo
(2021); Haferlach et al. (2020); Zhang et al. (2021); Wei et al.
(2022); Wu et al. (2018); Jindal et al. (2017); Sharma et al.
(2017); Vajen et al. (2022); Sharma et al. (2018); Qin et al.
(2019); Peng et al. (2021). Band features, gray profiles, and
shape profiles were utilized by Ming and Tian (2010) to con-
duct geometric classification and achieved 85.6 % accuracy in
classification. Markou et al. (2012) proposed a support vec-
tor machine (SVM) based classifier by extracting the chromo-
some medial axes. In recent years, with the advances in con-
volutional neural networks (CNNs) and their applications in
various fields, especially computer vision and medical imag-
ing, Deep learning-based approaches have been widely applied
to computer-assisted chromosome recognition and demonstrate
higher classification accuracy. Xiao and Luo (2021) proposed
a method based on a siamese network, incorporating a group
inner-adjacency loss for chromosome classification. Qin et al.
(2019) and Vajen et al. (2022) emphasized the utilization of
prior knowledge to reassign prediction labels derived from
convolutional neural networks (CNNs). KaryoNet Xia et al.
(2023), on the other hand, enhanced prediction accuracy by
leveraging global contextual information through the innova-
tive Masked Feature Interaction Module (MFIM). The above-
mentioned studies highlight the critical challenges encountered
in automated chromosome segmentation and classification pri-
marily concentrated in the following aspects:

« Annotation Requirements (Segmentation): Training an

instance-level segmentation network requires mask anno-
tation on thousands of metaphase images (Fig. 2). Publicly

available datasets are rarely accessible due to privacy is-
sues. Whereas, no existing deep-learning-based algorithm
can be trained without ground truth annotation for each
image.

+ Robustness (Segmentation): Deep-learning-based seg-
mentation exhibits limited robustness when transferring to
metaphase images captured in diverse environmental con-
ditions, or domain shift. On the other hand, morphology -
based segmentation algorith ms are more robust, while they
demonstrate low precision in scenarios involving overlap-
ping and closely touching chromosomes.

« Batch Effect (Classification): Chromosomes exhibit sig-
nificant variations in length, banding depth, and thickness
fromvarious batches of metaphase images. Such variation
can also be caused by taking metaphase images at different
stages of celldivision, using different types of microscopes
under variant environmental conditions (Fig. 2).

+ Inter-class Similarity (Classification): Chromosome

classification involves a detailed process in which visually
similar chromosomes may exhibit only minor local differ-

ences that require careful comparison for differentiation.

3. Materials and Methods

Table 1. Data Statistics for 2 Benchmark Datasets

Dataset Attributes
Number of Samples 1,500
Banding G-Band
Image Size 1360*1024
Resolution 63X
z:ﬁeruEStaset Data Source Shanghai
Xinhua Hos-
pital
Image Format TIF
Detection Annotations 1,500
Mask Annotations 1,500
Karyotype Reports 1,500
Number of Samples 5,000
Banding G-Band
Image Size Various
Tseng Dataset Resolution 13X
(Public) Data Source Taichung
Tseng et al. (2023) Veterans
General
Hospital
Image Format JPG
Detection Annotations 5,000
Mask Annotations N/A
Karyotype Reports N/A
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Fig. 3. The detailedstructure for the five-way segmentation stream and the datasimulation process of KaryoXpert.

3.2. Datasets and Imaging Protocol

We collected 2 datasets for automated chromosome segmen-
tation and classification. In the Ikaros Dataset, we collected
1,500 G-band metaphase images sourced from 605 patients be-
tween 2022 and 2023 in Shanghai Xinhua Hospital, China.
These metaphase images were captured by CoolCube 1 cam-
era (MetaSystems, Germany) attached to the AXIO IMAGER
Z2 at 63x (Carl Zeiss, Germany), and subsequently exported to
the Ikaros system (MetaSystems, Germany). Each metaphase
image in this dataset is thoughtfully paired with its correspond-
ing chromosome mask annotation, delineating the boundaries
of all 46 chromosomes, and accompanied by a karyotype report
with classification labels. Additionally, we have categorized the
samples collected into two distinct groups: one from peripheral
blood and the other from amniotic fluid.

In the publicly available Tseng Dataset Tseng et al. (2023),
5,000 G-band metaphase images are collected from prenatal
chromosomal studies conducted between 2014 and 2021 at the
Cytogenetic Laboratory, Department of Women’s Medicine,
Taichung Veterans General Hospital. However, it is important
to note that mask annotations are not available for this dataset.
As a result, instance-level segmentation evaluation and chro-
mosome classification assessments cannot be performed on the
Tseng dataset, primarily due to the potential presence of over-
lapping chromosomes within bounding boxes. Detailed dataset
statistics can be referred to Table 1. To validate the models’
robustness, we conduct the training process on 1,400 samples

from the Ikaros dataset. We directly tested the remaining 100
samples from the Ikaros dataset and applied them to 500 test
samples of the Tseng dataset.

3.3.  Instance-Level Chromosome Segmentation without
trained with manually labeled Mask Annotations

3.2.1. Contour Separation

The initial stage of our proposed method leverages
morphology-based contour separation (first step Fig. 3). This
process utilizes a watershed transform Vincent and Soille
(1991); Beucher (1979) after applying binarization to raw
metaphase images with a specified threshold. We then elim-
inate contours that fall below a certain size threshold. Such
an approach ensures the robustness of our model across diverse
metaphase image environments. This transformation effectively
breaks down the raw metaphase image into manageable com-
ponents, which are subsequently channeled into the five-way
segmentation stream.

3.2.2. Five-Way Segmentation Stream

Utilizing a divide-and-conquer methodology, we partition
the entire segmentation stream into five trainable models, each
amenable to training with pure data simulation (see Fig. 3).
Firstly, we employ three binary classifiers for the initial sepa-
ration of contour elements into four distinct categories: Model
O is dedicated to classifying contours consisting of pure chro-
mosomes (either single or attached) from background noise.
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Model @ focuses on distinguishing single chromosomes from
cases involving multiple connected chromosomes. Model © is
specialized in isolating noise regions that are attached to chro-
mosomes from purely noisy regions. Afterward, Model® func-
tions as a detection-based segmentation network, to further dis-
entangle chromosome clusters into single ones. Meanwhile,
Model © is designed with the extraction of chromosomes that
are conjoined with noise—a notably challenging scenario in our
pipeline that necessitates careful consideration.

3.2.3. Data Simulation

The previously mentioned five-way segmentation stream is
able to be trained in a pure simulation format (Fig. 3 upper
panel), requiring only raw metaphase images and their corre-
sponding karyotype reports. In Model @, we manually anno-
tated any instances of noise that appeared in metaphase im-
ages, contrasting them with chromosomes extracted fromthe
karyotype reports. For model @@, we employed a “copy and
paste” methodology togenerate attached chromosomes, vary-
ing the number of chromosomes, rotations, and flipping condi-
tions randomly. All images are normalized to 256 256 before
feeding into the deep-metric learning network. The simulated
mas ks are obtained according to their counters relative to the
background. Utilizing the data generated fromthese previous
simulations, we alsoobtained the corresponding chromosome
masks, which were subsequently utilized to train the segmen-
tation networks for Model @ and Model ©. Overall, we ex-
tracted approximately 60,000single chromosome images and
8,000 noise samples from 1,500 karyotypes. Utilizing these,
we were abletogeneratearound 100,000s imulated overlapped
chromosomes, accompanied with instance masks, for the train-
ing of Model @ and Model ©.

3.4. Deep Metric Learning with Triplet Loss

Previously, we mentioned that the major challenges for auto-
mated chromosome classification lie in data insufficiency, inter-
class similarity, and batch effect. Here we propose a chromo-
some classification method based on deep metric learning that
is trained with predefined triplet loss to effectively tackle these
challenges.

InFig. 4, a feature mapping network (f) is firstly designed to
learn a mapping fromthe original input chromosome image to
a low-dimensional dense embedding space. The feature map-
ping network consists of two components: The first part em-
ploys a convolutional neural network to extract and character-
ize features from the input chromosome image, translating spa-
tial information into vectors. The second part conducts band-
ing extraction on the original chromosome image to derive its
banding feature vector. These two vectors are then concate-
nated and ultimately transformed into a 128-dimensional vec-
torspace: X = (X1, X2, X3, ..., X128). Such embedding is further
normalized into (0-1) range under Equation (1).

Xi— u
x'= J ,(i €1, 128)) (@)
(0) *e

, Where u and o are the mean and standard deviation of the
batch,and e is an arbitrarily small constant added to the denom-
inator to ensure numerical stability. Subsequently, a distance
function is formulated to ensure that similar chromosomes ex-
hibit relatively narrow distances from each other, whereas ob-
jects of distinct classes exhibit relatively expanded distances.
With previously calculated feature vectors, we employ cosine
similarity to quantify the distances between pairs of feature vec-

tors. Take vectors Xmm and E;x128 as examples. The cosine
distance is calculated in Equation 2
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A B
L A Bl

,where A B is the inner product of the two 128-dimensional
vectors, and ‘A—ﬂ,‘g represent their modules.

We then define the triplet with 3 samples: Anchor (X),
Positive(x*), and Negative(x~) sample. Positive samples are
chromosomes of the same category with anchor, although they
may originate from different batches. Negative examples con-

sist of chromosomes fromd ifferent categories. With the triplet,
we define thetriplet loss function:

Cos(A, B) = @

Lo, %%, x7) = max(@, [[f =] = [[f =] +m)  (3)

, Where f (feature mapping network), m (margin) is a constant
greaterthan zero. Our ultimate optimization objective is to min-
imize the distance between xand x* while simultaneously max-
imizing the distance between x and x™. In our specific case, we
set the margin, m, to 0.2. Detailed explanations for triplet loss
can be found in Supplementary Materials.

3.5. Implementation Details

3.4.1. Network Training

Model ©O-® are trained with ResNet50He et a. (2016) net-
work architecture, with fully connected layers for binary clas-
sification incorporated into the architecture. During the train-
ing process, data augmentation techniques such as random ro-
tation, flipping, scaling, and color jittering are systematically
applied to diversify the dataset. Model @ and ® are trained
with the Yolov7 Wang et al. (2023) network architecture with
fully synthetic data. We select the Yolo family backbone due
to its real-time detection speed and flexibility. This versatil-
ity ensures that KaryoXpert can be utilized in a wide range of
applications, from cloud-based solutions to personal computer
applications. Detailed training parameters can be found in Sup-
plementary Materials.

3.4.2. Benchmarks

For segmentation, all models are trained using the training
set of the lkaros dataset and evaluated against its testset to es-
tablish benchmarks. Additionally, to assess their robustness,
the models are directly applied to the test subset of the Tseng
dataset without further adaptation. Due to concerns related to
data privacy and ethical approval, few chromosomal segmen-
tation programs are publicly available for head-to-head com-
parison. Therefore, we extracted the segmentation backbone
for the state-of-the-art (SOTA) algorithm Xie et al. (2019);
Tseng et al. (2023) and conducted detailed statistical evalua-
tions. Detection-based frameworks of MaskRCNN He et al.
(2017) (Backbone of Xie et al. (2019)), Yolov4 (Backbone of
Tsengetal. (2023)), Yolov7 Wangetal. (2023), YOLACT
Bolya et al. (2019), and SOLO Wang et al. (2020) are trained
under the same training set from the Ikaros dataset with Open
MMLab Detection Toolbox Chen et al. (2019).

For classification, we benchmarked with the state-of-the-
art (SOTA) chromosome classification algorithm KaryoNet

Xia et al. (2023), and classical classification backbones, such
as ResNet50 He et al. (2016), EfficientNetVV2 Tan and Le
(2021), ConvNeXt Liu et al. (2022), and Vision Transformer
(ViT)Dosovitskiy et al. (2020). All models are fine-tuned un-
derthe same chromosome identification dataset fromthe lkaros
dataset with torchvision v0.15 Marcel and Rodriguez (2010)
pre-trained weights.

4. Experiments

4.1. Evaluation Metrics

Segmentation: In the evaluation of chromosome segmenta-
tion at the instance level, we utilize the Average Precision (AP)
metric across various loU thresholds, specifically AP@0.5 and
mAP(AP@0.5:0.95), with reference to both ground truth seg-
mentation masks (Seg) and bounding boxes (BBox). This eval-
uation is conducted using the COCO instance segmentation API
Lin et al. (2014). It offers a comprehensive assessment of a
model’s ability to detect objects across different scales within
an image. loU, or Intersection over Union, serves as a measure
to estimate how well the algorithm’s predictions align with the
actual regions of interest for objects in an image, as defined in
the Equation (4):

. . IntersectionArea
IntersectionoverUnion(loU) =

UnionArea

Then we are able to calculate Precisionseg and Recallseg with
Equation 5 based on various loU thresholds:

TP
Recallseg ="
+
B TPTP FN ©)
Precisionseg =—
TP +FP

where TP, FN, and FP stand fortrue positives, false negatives,
and false positives under a certain loU threshold [0.5, 0.95].
Then, AP can be calculated from 11 points from the Precision-
Recall curve from levels of [0, 0.1, 0.2,...,1] under Equation 6:

Precision(Recall;) 6)
11

re0,0.1,..1

Wealso report the Average Recall (AR@ 10U0.5:0.95) value
for each benchmark, which provides an overall assessment of
the model’s ability to recall objects across various scales.

Enumeration: For stability analysis, we conduct metaphase
image chromosome enumeration across two datasets. Differ-
ent from instance-level segmentation, the evaluation criteria are
Accuracy (Acc) and Average Error Ratio (AER), which are de-
fined under Equation 7:

kTPk
(TP« + FPc+ FNy) @)

AER = k!FPk +FNk!
k(TPk +FNk)

, Where True Positive (TPx) is defined as the instance when a
predicted bounding box is correctly matched to a ground truth

Acc =
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Ground Truth Maskrenn-r50 (Xie et al.2019) Maskrenn-r101 YOLOv4 (Tseng etal.2023) KaryoXpert (Ours)
a)
iKaros 2 fn
B18-0670
1
) ‘
2 1
. |
]
1
\ . |
______ 1
b) =t
Tseng ‘
1100562
= A\l

Fig. 5. Intuitive segmentation performance of KaryoXpertand multiple benchmarks on the Ikaros (a) and Tseng (b) testsamples. A particular zoom-in
region isshown on challenging areas e xhibiting overlapping and touching chromosomes.

bounding box in the k_th image over a given loU threshold
(0.5 inthis study). False Positive (FPx) denotes that a predicted
bounding box does not have a matched ground truth above the
loU threshold. False Negative (FNk) here denotes the ground
truth thatis not detected by any predicted bounding box

We also include a rather strict enumeration metric, named
Whole Correct Ratio (WCR). It is calculated as the percentage
of 100% correct enumeration across the whole testing set. The
metric is calculated as the ratio N*/N, where N* represents the
number of ground truth samples correctly identified (FNx=0,
and FPx = 0), and N is the size of the testset.

Classification: For a comprehensive evaluation, we employ
both Accuracy @1 and Accuracy @5 metrics. The two metrics
assess the proportion of instances in which either the top-1 or
top-5 prediction results correctly match the ground truth label.

4.2. Instance-Level Metaphase Image Segmentation Perfor-
mance

In this section, we present a comparative analysis of instance-
level metaphase image segmentation performance on the test
sets from two distinct datasets. Initially, we assess the per-
formance using metrics such as bounding box average preci-
sion (AP) and segmentation average precision (AP), within a
detection-based framework.

Table 2 provides asummary of the segmentation results. No-
tably, when examining KaryoXpert’s performance on the Ikaros
dataset, it’s important to note that KaryoXpert was trained using
entirely simulated data, we showed 79.9% bonding box mAP

with 71.9% segmentation mAP, compared with algorithms
trained with paired maskannotations. Due to the effective adap-
tation and beneficial overfitting, detection-based algorithms
(MaskRCNN ResNet-101+RPN He et al. (2017)) demonstrate
good performance in terms of segmentation mean average pre-
cision (MAP). In terms of recall, KaryoXpert demonstrated a
strong ability to accurately identify and capture all relevant
positive chromosomes within the metaphase image, achieving
85.3% in bounding box mean average recall (mAR) and 81.8%
in segmentation mAR.

On the other hand, when tested on different domains (Tseng
dataset), existing detection-based methods Xie et al. (2019);
Tseng et al. (2023) faced huge performance drops due to do-
main shifts under dataset variations (Fig. 5). This domain shift
can lead to a lack of model generalization, as the learned fea-
tures may not be directly applicable to the newdataset. Regard-
ing the bonding-box mean average precision and recall, KaroX-
pert demonstrates state-of-the-art segmentation robustness with
60.2% mAP and 71.5% mAR (Table 2). It is worth noticing
that mask annotations are not available for the Tseng dataset,
therefore no segmentation evaluations can be conducted on this
dataset. Furthermore, segmentation evaluation is also not appli-
cable to the Yolov4 object detection engine applied fromTseng
et al. (2023).

While the morphology-based segmentation algorithm ex-
hibits robustness in its initial step of separating the contours, it
demonstrates lower segmentation precision when dealing with
overlapping and touching chromosomes. Fig. 6 is an illustra-
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Table 2. Performance Metrics of KaryoXpertand benchmarks on the test sets of 2 datasets are presentedfor both bounding box and segmentation
evaluations. mAP refers to mean ave rage precision@10U0.5:0.95, mAR refers to mean average Recall@10U0.5:0.95

Train w/  BBox

BBox BBox Seg Seg Seg
Dataset Method Mask Ann AP@ 05 mAP  mAR  AP@05 mAP  mAR
Mask R-CNN Xie et al. (2019) Y 0988 0.789 0.829 0.978 0.622 0.672
Mask R-CNN ResNet-101+RPN Y 0.988 0.812 0.842 0.978 0.746 0.777
YOLACT ResNet-50 Y 0901 0.707 0.652 0.896 0.505 0.555
Ikaros Dataset SOLO ResNet-50-1x Y 0.752 0563 0.638 0.807 0.525 0.577
(in-House) YOLOv4 Tseng et al. (2023) Y 0.726 0448 0.548 - - -
YOLOv7 Y 0731 0454 0.554 0.786 0.468 0.480
KaryoXpert N 0.982 0.799 0.853 0.962 0.719 0.818
Mask R-CNNXie et al. (2019) Y 0.783 0420 0.498 - - -
Mask R-CNN ResNet-101+RPN Y 0829 0470 0.555
Teonn Natacet  YOLACT ResNet-50 Y 0.752 0456 0.538
(Brihlic) SOLO ResNet-50-1x Y 0.728 0313 0.429
Teonnm et al ooy YOLOV4 Tsengetal. (2023) Y 0564 0.256 0.290
YOLOv7 Y 0.664 0.286 0.365
KaryoXpert N 0.863 0.602 0.715
O\Erlagm;?g:ected De acmom'; : H[mu','” Watershed Kanoxpert Table 3. Stability Analysis on Chromosome Enumeration
Hinace L2l (2022 N WCR  AER Acc
pdldsel ivieunou (%) 1 (%) ! (%) )
Xie et al. (2019) 25.0 12.89 89.19
MaskR-CNN-R101 410 9.27 90.31
earne YOLACT-R50 25.0 13.06 87.92
Natacat SOLO-R50 18. 0 2741 7453
Tseng et al. (2023) 17.0 25.84 79.80
YOLOv7 34.0 14.3 85.12
KaryoXpert 62.0 8.08 92.3
Xie et al. (2019) 7.31 40.89 67.17
MaskR-CNN-R101  13.98 30.07 75.65
Teonn YOLACT-R50 15.95 17.57 73.94
Natacat SOLO R50 12.68 42.43 61.34
Tseng et al. (2023) 10.6 48.75 68.62
YOLOv7 3191 34.69 68.91
KaryoXpert 33.51 13.28 88.09

Fig. 6. Segmentation performance of KaryoXpert compared with
Morphology-based algorithms.

tion of the overlapping situations regarding touching (1st row),
overlapping (2nd row), and chromosome clusters (3rd row). We
visualized the segmentation performance with the convex-hull-
based algorithm Minaee et al. (2014) and watershed-based al-
gorithm Vincent and Soille (1991); Devaraj et al. (2022). The
morphology-based algorithm effectively handles simple scenar-
ios where less than three chromosomes are present without
overlapping. However, in the presence of multiple overlapping
regions, particularly in cases involving clusters, the morphology
algorithms struggle to provide accurate segmentation results.
Detailed overlapping variances and resource consumption can
be found in Supplementary Materials.

4.3. Stability Analysisin Chromosome Enumeration

Table 3 presents the stability analysis of KaryoXpert across
various benchmarks. Given the fact that deep-learning models
are quite sensitive to domain shift during cross-dataset trans-
ferring, existing approaches experience a notable performance
drop in WCR(%). This effect is further illustrated in Figure
5, where an increase in false negatives (FN) is more prevalent
due to domain shift. Owning to a sophisticated algorith mic de-
sign that combines the strengths of morphological algorithms
and deep-learning neural networks, KaryoXpert demonstrates
state-of-the-art stability and robustness performance compared
to previous works. It notably decreased the Average Error Rate
(AER%) to 8.08% on the iKaros dataset and further reduced it
to 13.28% on the Tseng dataset.
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4.4. Chromosome Classification

Table 4. Performance Metrics of KaryoXperton the classification. Karyo-
Net Xia et al. (2023) takes 46 images as input, therefore no Acc@5 can be
reported.

Dataset Methods Acc@1l Acc@5
ResNet50 0.9476 0.9957
EfficientNet\V2 0.9591 0.9946
lkaros Dataset  ConvNeXt 0.9497  0.9946
(in-House) VIT 0.9533  0.9943
Xia et al. (2023) 09680 -
KaryoXpert 0.9706  0.9963

We then evaluated the quantification performance of deep-
learning-based chromosome recognition methods in contrast to
the proposed deep-metric learning framework integrated within
KaryoXpert. The benchmark algorithm consists of SOTA chro-

mosome classification algorithm KaryoNet Xia et al. (2023),
and standard classification backbones: ResNet50 He et al.
(2016), EfficientNet\V2 Tanand Le (2021), ConvNeXt Liu etal.
(2022), and Vision Transformer (ViT) Dosovitskiy et al. (2020).
As displayed in Table 4, we computed identification accuracy
for both top-1 and top-5 predictions for the 24 potential G-band
chromosome classes. All models demonstrate satisfactory per-
formance (above 90% in Acc@1, and Acc@5) when provided
with an adequate number of training samples. Different from
a supervised learning algorithm, deep metric learning acquires
knowledge aboutthe internal connections and class distribution
characteristics of chromosomes within a karyotype report, lead-

ing to its improved classification performance of 97.06% on the
testsets.

4.5. Runtime and Resources Comparison

Table 6. Classification Inference Runtime & GPU Memory Comparison

Inference Runtime  GPU

Methods (per 100 reports) Memory
ResNet50 16.1 sec 1,687Mb
EfficientNet\V2 19.2 sec 1,265Mb
ConvNeXt 15.2 sec 1,511Mb
VIT 15.1 sec 1,843Mb
Xia etal. (2023) 75.4 sec 9,733 Mb
KaryoXpert 14.4 sec 1,105Mb

detection-based framework. Nevertheless, it still delivers a ro-
bust and precise segmentation result within 1 second, utilizing
less than 2 GB of GPU memory. One clear conclusion can be
drawn regarding the prediction time for KaryoXpert’s segmen-
tation: it ensures robustness and delivers satisfactory segmenta-
tion performance while providing a good tradeoff between pre-
diction time and the availability of training annotations. On the
other hand, in chromosome classification, due to the fact that
KaryoNet Xia et al. (2023) incorporates global information in
its prediction process. As a result, it contributes to a compara-
tively slower inference speed for chromosome classification.

4.6. Training Efficiency Analysis

Table 7 presents an efficiency analysis of the training pro-
cess for the proposed KaryoXpert and benchmark methods,
comparing both training duration and GPU memory utilization.

The benchmark Vision Transformer necessitates approximately
11.5 GPU hours and approximately 7GB of GPU memory for

training. In contrast, the proposed KaryoXpert consumes less
amount of GPU memory and approximately 1.6 GPU hours for
model training.

Table 7. Classification Training Time Comparison

Table 5. Segmentation Inference Runtime & GPU Memory Comparison Methods Parameter  Training GPU

Method Inference Run-time GPU Size Time Memory
0ds per image Memory ResNet50 22.4M 6.5h 5,451Mb

- EfficientNet\V2 19.27M 7.3h 8,119Mb

Mask-RCNN Xie etal. (2019) 0325 sec ZBIOVMD  convmoxt oo 1 0. 07IMb

Mask-RCNN ViT 81.84M  115h 6,385Mb

FoeNet 101 RPN 0.395 sec 4385Mb  Xia etal. (2023) 28.19M 12h 8,105Mb

esNet-

YOLACT ResNet-50 0580 sec gl00Mp ~ —anoxpert L1sM 16N L547Mb

SOLO ResNet-50-1x 0.523 sec 5,413Mb

YOLOv4 Tsengetal. (2023) 0.191sec 1,874 Mb

YOLOv7 0.232 sec 2,225Mb

KaryoXpert 0.916 sec 1.439Mb __4.7. Clinical Evaluation

Meta-phase Image ~7.2 sec (Production Time)

In order to evaluate the clinical value of KaryoXpert in the

Another crucial criterion for autonomous karyotyping is the
execution time and computational efficiency. As indicated in
Table 5 and 6, a karyotyping system must generate automated
segmentation results within a 7-second timeframe, parallel with
the production time of the metaphase image. Detection-based
frameworks exhibit rapid inference speed but consume sub-
stantial memory. Since KaryoXpert conducts a five-way seg-
mentation stream, its inference time is longer than that of the

segmentation process, we invited a highly experienced cyto-
geneticist with more than 10 years of karyotyping experience
from Shanghai Xinhua Hospital to give the clinical evalua-
tion for the segmentation results. In this evaluation, we rigor-
ously examined the segmentation outcomes by randomly select-
ing 20 samples derived from metaphase images sourced from
both peripheral blood and amniotic fluid. The aim was to con-
front KaryoXpert’s segmentation results with a meticulous clin-
ical perspective, settingan extremely rigorous criterion where
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only segmentation that exhibited a 100% correspondence with
the ground truth was deemed true positives. We report the
clinical evaluation for KaryoXpert, MaskRCNN-R101He et al.
(2017), and commercial software Ikaros V5.5.10 (MetaSystems
GmbH) Roseetal. (2019); Vajen etal. (2022) in their segmenta-
tion respectively. The results ofthis evaluation are summarized
in Table 8. The results illustrate that KaryoXpert outperforms
Ikaros V5.5.10 by enhancing segmentation performance by ap-
proximately 30% in precision, and 50% in recall. Furthermore,
the false positive rate has been effectively reduced to nearly 4%,
significantly accelerating the CRUD (Create, Delete, Read, Up-
date) process through the utilization of KaryoXpert.

Table 8. Clinical evaluation on the Ikaros Datasetseparately for peripheral
blood and amniotic fluid samples, FPR stands for False positive rate

Sample  Method Precision  Recall FPR
)1 %) (%)}

Peripheral KaryoXpert 96.31 93.47 3.68
Mask R-CNN-R101 88.28 91.28 11.71
Blood a0 V5.5.10 6611 4743 5256

Amniotic KaryoXpert 95.84 97.51 4.15
Fluid Mask R-CNN-R101 89.13 94 .41 10.58
iKaros \5.5.10 59.66 39.13 60.87

5. Conclusions

Automated karyotyping holds great significance in advancing
cytogenetic research. In this paper, we focus on the instance-
level chromosome segmentation and classification and pro-
posed KaryoXpert. KaryoXpert leverages the strengths of both
morphology algorithms and deep learning models, enabling ef-
ficient training, that breaks the limit for instance-level maskan-
notation requirement. Meanwhile, its strong robustness guaran-
tees a plug-and-play manner to boost performance under multi-
ple application scenarios under domain shift. KaryoXpert was
predominantly developed and rigorously assessed using real-
world clinical datasets. Specifically, the G-band chromosome
samples employed in this study were primarily sourced from
peripheral blood and amniotic fluid.

The probable limitation of KaryoXpert stems from its re-
stricted capacity to handle R-band cytogenetic data extracted
frombone marrow samp les, which tend to have a lower banding
resolution with more blurred patterns. Nevertheless, the pro-
posed method introduces a novel paradigm to Al-driven auto-
mated karyotyping analysis, offering substantial clinical value
and promising future prospects.
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We propose KaryoXpert as a new paradigm in automated karyotyping, that
eliminates the need for manually annotated ground truth instance masks during
training.

Advantages from both morphology algorithm and deep-learning model are merged,
which guarantees KaryoXpert has strong robustness and high segmentation
accuracy across multiple datasets that bear domain shitt.

Metric learning-based chromosome classification is proposed to enable a more
accurate chromosome recognition, effectively reducing the impact of batch effects,
domain shift, and inter-class similarity.

GPU acceleration enables real-time inference with cutting-edge clinical accuracy
on real-world clinic cytogenetic samples.

In contrast to conventional karyotyping methods relying heavily on mask
annotation, our methodology integrates a novel fusion of deep learning and
morphological algorithm. This innovative fusion enables mask-free training,
enhancing model robustness, and boost segmentation and classification accuracy.
Our experiments on real-world NIPT datasets showcase a remarkable 20%
improvement in clinical evaluation compared with existing methods, showing the
potential clinical impact of our innovative approach in aiding diagnosis and
treatment planning in cytogenetic imaging
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