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A B S T R A C T   

Heterogeneous data is endemic due to the use of diverse models and settings of devices by hospitals in the field of 
medical imaging. However, there are few open-source frameworks for federated heterogeneous medical image 
analysis with personalization and privacy protection without the demand to modify the existing model structures 
or to share any private data. Here, we proposed PPPML-HMI, a novel open-source learning paradigm for 
personalized and privacy-preserving federated heterogeneous medical image analysis. To our best knowledge, 
personalization and privacy protection were discussed simultaneously for the first time under the federated 
scenario by integrating the PerFedAvg algorithm and designing the novel cyclic secure aggregation with the 
homomorphic encryption algorithm. To show the utility of PPPML-HMI, we applied it to a simulated classifi-
cation task namely the classification of healthy people and patients from the RAD-ChestCT Dataset, and one real- 
world segmentation task namely the segmentation of lung infections from COVID-19 CT scans. Meanwhile, we 
applied the improved deep leakage from gradients to simulate adversarial attacks and showed the strong privacy- 
preserving capability of PPPML-HMI. By applying PPPML-HMI to both tasks with different neural networks, a 
varied number of users, and sample sizes, we demonstrated the strong generalizability of PPPML-HMI in privacy- 
preserving federated learning on heterogeneous medical images.   

1. Introduction 

Data-hungary artificial intelligence (AI), including various machine 
learning (ML) and deep learning (DL) methods [1], is increasingly being 
applied to solve miscellaneous problems in medical image analysis 
(MIA) and has led to disruptive innovations in pathology, radiology, and 
other fields [2–8]. Since modern DL models typically have millions of 
parameters or even more [9], a mass of curated data is usually required 
to train such data-hungry models to achieve clinical-grade performance 
[10–12]. However, even with modern advanced data science, generating 
a huge amount of data to fulfill the requirements of training models 
independently is still challenging for most hospitals and clinics. There-
fore, seeking the cooperation of institutions to jointly generate data and 
train a joint model becomes an ideal solution [13]. In the centralized 

training, the server needs to collect data from all collaborators, and then 
the ML/DL model will be trained on the server. Nevertheless, such a 
strategy leads to more concerns related to data security and privacy. For 
example, training an AI-based lung infection detector [14–17] required 
a large amount of high-quality computerized tomography (CT) scans 
and human-labeled metadata, while in reality, such data is difficult to be 
obtained and shared because health data is usually highly sensitive thus 
usage is tightly regulated [5,18]. Hence, federated learning (FL) [19–22] 
was proposed as a learning paradigm that aims to address data gover-
nance and privacy issues by collaboratively training models without the 
need to share the data itself. 
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1.1. Federated learning 

In FL, it is assumed that a set of n (n ≥ 2) users are connected to a 
server, where each user can only access its own data [19]. Upon that, the 
users’ goal is to acquire a model that captures the features of all users’ 
data without sharing their local data with any other user or the server. 
Though each user can solely train the model with its own data without 
sharing any information with other users, the independently trained 
model of each user may not generalize well to other users’ data or new 
samples, especially in the case of strong heterogeneity. Thus the 
following FL procedure was devised to learn a more generalized server 
model. Firstly, all users will receive a copy of the current server model 
and update the local model using its own data. After that, users send the 
updated model to the server. Finally, the server aggregates received 
local models to update the server model for the next broadcasting. This 
process continues until a generalized server model could be generated 
[20,23]. To be more specific, McMahan et al. [20] proposed the feder-
ated averaging (FedAvg) algorithm, which is the most famous aggre-
gation method in the community, to aggregate local models collected by 
the server. Building upon this, recent studies also focused on crafting 
practical and robust federated learning frameworks designed for 
real-world applications, catering to various deep learning models across 
diverse platform architectures, such as Flower [24], EasyFL [25], FATE 
[26], R2Fed [27], and so on [28–30]. 

However, previous studies showed that the FedAvg algorithm might 
not converge or could be slowed down when local models drift signifi-
cantly from each other due to the heterogeneity of local non- 
independent and identically distributed (non-IID) data [31]. There-
fore, in the presence of heterogeneity, the server model trained by FL 
may not generalize well to each user’s data [32], which is a significant 
obstacle to applying FL in practice. Taking the infection segmentation on 
CT scans as an example, different hospitals may have diverse CT scan-
ners and scanning settings, thus the CT scans will have inherent di-
versity. With that, the server model trained with FL for segmentation 
will be unable to achieve good performance on each user’s data due to 
heterogeneity. 

1.2. Personalized federated learning 

To apply the FL paradigm with the heterogeneous data as in the case 
of CT diagnosis, personalized federated learning (PFL) was devised as an 
enhanced version of FL [33–38]. To address personalization in FL, a 
two-step approach namely ‘FL training + local adaptation’ was regarded 
as the most commonly acknowledged strategy by the FL community [36, 
39]. With this strategy, the server model is firstly trained using FL on 
heterogeneous users’ CT data. Unexpectedly, the server model may 
perform poorly on each user’s data due to data heterogeneity. Therefore, 
a few additional training steps are required to adapt this server model 
locally and realize the personalization. Depending on the specific stra-
tegies used in training, different personalized variants of the FedAvg 
algorithm were proposed, such as pFedMe [35], Per-FedAvg [34], and 
APFL [40]. However, all the aforementioned methods were theoretical 
research, and little applied attempt has been conducted, especially in the 
medical analysis field [41,42]. 

In addition to optimizing the training strategies for heterogeneous 
data, FedAVG + Share [43] improves performance on non-IID data by 
sharing a small amount of data among users. However, the strategy 
could not be adopted when the user’s data is required to be strictly 
private. FedReplay [44] needs to train a universal and auxiliary encoder 
network, which encodes each user’s data into latent variables that will 
be used to train the server model for classification. Therefore, given an 
existing neural network model, e.g. a segmentation model, it needs to be 
disassembled and restructured to work with FedReplay in FL. Thus, 
FedReplay cannot be simply and directly combined with the existing 
models and also might not be easily used by new users as a closed source 
method. As the latest work, FedPerGNN [45] was specially designed for 

graph neural networks and thus was limited to the application of graph 
data, which is usually different from medical imaging data. Therefore, 
with strictly prohibited raw data sharing and without any structural 
modification to the existing DL methods, an open-source, user-friendly, 
plug-and-play, and robust privacy-preserving framework for personal-
ized federated heterogeneous medical imaging tasks is necessary. 

1.3. Privacy in FL and PFL 

Privacy is a hot and significant topic in the age of medical big data 
[46]. Nevertheless, when we applaud the fact that private medical data 
is no longer shared with other parties in FL, previous studies showed that 
FL is still vulnerable to attacks, such as data poisoning attack [47], 
membership inference attack [48–50], source inference attack (SIA) 
[51], attribute reconstruction attack [52], and inversion attack [53–56], 
thus compromising data privacy. 

Due to privacy concerns associated with the presence of a server in 
traditional FL, especially when the client does not trust the server, the 
concept of decentralized federated learning (DFL) has been introduced. 
DFL operates as a decentralized structure, wherein clients communicate 
and exchange model parameters directly without relying on a central 
server [57,58]. Various DFL methods have been proposed, such as 
peer-to-peer FL [59], server free FL [60], serverless FL [61], 
device-to-device FL [62], and swarm learning [63]. However, DFL is still 
facing a series of challenges such as high communication overhead, 
network security, and all [64] compared to conventional FL. Meanwhile, 
the majority of existing DFL approaches primarily contribute to theo-
retical research, with a limited focus on applications in medical imaging 
and addressing data heterogeneity. 

Similar to FL, PFL is also facing the threat of privacy attacks. Diverse 
strategies could be used to protect data privacy with FL and PFL. As the 
latest research, differential privacy (DP) [65] was used to add noise to 
the gradient transmitted in PFL [45,66] as same as in FL [67] to protect 
the privacy of users’ data. However, DP adopts the mechanism of adding 
noise to enhance privacy protection while sacrificing model accuracy 
[68], resulting in difficulty to achieve clinical-grade performance in 
practice. Besides, cryptographic approaches, including secure aggrega-
tion (SA) [69], homomorphic encryption (HE) [70], multi-party 
computation (MPC) [71] and etc., realize privacy preservation by 
sacrificing time and space without affecting the accuracy much. Among 
these techniques, MPC requires the involvement of multiple servers, 
which is different from the case with only one server. Conventional SA 
requires heavy communications between users and the server, which 
will cause overhead for users with limited resources, while the latest 
decentralized version of SA [72] transferred the process of aggregation 
from the server to users, reduced the need for high communication be-
tween all users and the server, and further strengthened the privacy 
protection as the server is usually an un-trusted third party. However, 
the protocol used in Ref. [72] required a three-step process as ‘decryp-
tion-summation-encryption’ to aggregate the local gradients into the 
transmitted gradients in the loop, which could be further simplified into 
a two-step process as ‘encryption-summation’ with the help of HE as in 
PPPML-HMI. 

To strengthen privacy protection in FL, several open-source methods, 
such as FATE [26], PySyft [73], and NVFlare [74], have already been 
developed to secure gradients during training using techniques like SA 
and HE. However, these methods are mainly based on the conventional 
FL and thus could not address the challenges with heterogeneous data 
while still allowing privacy protection. 

1.4. Heterogeneity and privacy in MIA 

As a representative of many medical tasks that would strongly 
benefit from personalization and privacy protection, especially in 
medical imaging, the accurate detection and segmentation of lung 
infection caused by the severe acute respiratory syndrome coronavirus 2 
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(SARS-CoV-2, COVID-19) have been such an important task since 2020 
[75]. To diagnose lung diseases, imaging is the major source of data and 
the most commonly used imaging technologies are X-rays and CT scans 
[76]. Meanwhile, DL has been widely applied in developing the 
computer-aided diagnosis (CAD) systems for COVID-19 [8,15,77–81]. 
Most aforementioned works require centralized training, where the 
research institution acts as a coordinator/server to collect raw CT scans 
from users like hospitals to train a model centrally. Several problems 

exist in this process. Firstly, all users need to strictly trust each other and 
the server in order to share the raw CT scans, which might limit the 
number of users and available data involved, leading to insufficient 
training data. Secondly, users have to deliver the private raw CT scans to 
the server for centralized training, leading to potential privacy breaches. 
Therefore, a proper FL approach is necessary to allow users to keep their 
data private, thus more data providers could participate in the 
co-training of the model and more diverse data could be used to train a 

Fig. 1. Scheme of PPPML-HMI. In our real-world case, hospitals (user 1 to user k) use devices from different manufacturers, models, and settings for the detection of 
lung infection by COVID-19. The use of diverse devices generates data with inherent differences, namely heterogeneous data. With FL (indicated by grey dashed 
lines), the goal is to jointly train a consensus model with the data from each hospital without sharing the data itself. With homogeneous data across hospitals, FL 
could efficiently train a server model that works well for all hospitals. However, when hospitals have heterogeneous data, the server model trained by FL could not 
perform well when applied to each hospital. Thus, a personalized mechanism was integrated into PPPML-HMI and allowed models to adapt to heterogeneous data 
(indicated by pink dashed lines). To strengthen the privacy protection of PPPML-HMI, we designed the cyclic secure aggregation with homomorphic encryption to 
transfer the process of aggregating gradients from the server to the users in a decentralized manner. To demonstrate the privacy-preserving capability of PPPML-HMI, 
we simulated that an attacker could steal the gradients passed in FL and try to recover the original picture. 
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model with better generalization power. Though FL has been widely 
applied in tasks related to COVID-19 in the latest research [82–87], the 
heterogeneous data and privacy breaches are still problems as there is 
currently no such open-source solution for personalized and 
privacy-preserving federated heterogeneous medical image analysis, 
especially for the heterogeneous COVID-19 CT analysis. 

Here, we proposed PPPML-HMI, a novel open-source, robust, user- 
friendly and plug-and-play method for personalized and privacy- 
preserving federated heterogeneous medical image analysis (Fig. 1). 
PPPML-HMI specifically targets the scenario where no raw data should 
be shared with any third party, no structural modification should be 
conducted to existing DL models, and in a context of heterogeneous data. 
To our best knowledge, personalization and privacy protection were 
discussed simultaneously for the first time under the federated scenario 
by integrating the PerFedAvg algorithm and designing the novel cyclic 
secure aggregation algorithm with homomorphic encryption (CSAHE). 
To demonstrate the utility of PPPML-HMI, we applied it to a simulated 
classification task namely the classification of healthy people and pa-
tients from the RAD-ChestCT Dataset [88,89], and one real-world seg-
mentation task namely the segmentation of lung infections from 
COVID-19 CT scans by extending our previous method for the task [8, 
15], which was also a general method for segmentation of lung, tracheal, 
vascular, etc. By applying PPPML-HMI to both tasks with different 
neural networks, a varied number of users, and sample sizes, we further 
demonstrated the strong generalizability of PPPML-HMI. Finally, we 
also applied the improved deep leakage from gradients to simulate 
adversarial attacks and showed the strong privacy-preserving capability 
of PPPML-HMI. 

2. Methods 

2.1. Design of PPPML-HMI 

PPML-HMI is built up with two major modules as a training frame-
work: the PFL (Section 2.4) and the CSAHE modules (Fig. 1, Algorithm 1 
and Section 2.5). During each round of the global training, the server 
broadcasts the server model to each user for initialization. Then, each 
user trains the local model using the local private data. After finishing 
the local training, each user calculates the gradient between the local 
model and the server model. To avoid sending users’ gradients directly 
to the server, which could lead to potential privacy leakage, PPPML-HMI 
transfers the gradient aggregation process that is originally performed 
on the server to a loop composed of all users through the CSAHE 
mechanism in a decentralized manner. At the end of each global 
training, the CSAHE mechanism is executed. A user in the loop will be 
randomly selected as the initiator, who will protect its own gradient by 
summing a random mask as noise to the gradient and encrypting the 
noised gradient with HE, and will transmit the noised gradient into the 
loop for further aggregation. The noise in the aggregated gradients is 
kept till the end of the execution of the CSAHE mechanism. PPPML-HMI 
achieves decentralized secure gradient aggregation with homomorphic 
encryption (Section 2.5), thus each user could confidently aggregate 
their own gradients to the transmitted gradient without worrying about 
privacy issues. The code for this paper is publicly available at https:// 
github.com/JoshuaChou2018/PPPML-HMI. 

2.2. Dataset processing 

For the classification task, we simulated and constructed our het-
erogeneous data from the RAD-ChestCT Dataset [88,89], which includes 
35,747 chest CT scans from 19,661 adult patients. For the segmentation 
task, we collected 180 anonymized CT scans generated by diverse CT 
scanners and scanning parameters from five hospitals labeled as A ~ E. 
All patients were confirmed to be COVID-19 positive by either the 
nucleic acid test or antibody test. 

To perform the segmentation of lung infections from the 3D CT scans, 

we need to find a mapping F : R(H×W×S)↦{0,1}H×W×S, where H × W is 
the height and width of each 2D CT image and S is the number of images. 
Since the data generated by different CT scanners owned various volume 
sizes, spatial normalization was adopted to re-scale raw CT data into a 
machine-agnostic standard space with a fixed shape (512 × 512 × 512). 
As in Ref. [15], we decomposed the 3D segmentation of each 3D CT scan 
into three 2D segmentation problems along the x-y, y-z, and x-z views 
(axial, sagittal, and coronal). The training along each plane was per-
formed independently. 

All prediction and visualization of samples were performed with 
models trained with data excluding the corresponding sample itself. 

2.3. Neural network for the segmentation of lung infections 

For the classification task, we adopted the 3D DenseNet [90] as the 
backbone DL model. For each segmentation task along the three views, 
we trained an independent U-Net that took five adjacent images with 
dimension: R5×512×512 as inputs, and output the probability map of 
infection regions for the central image with dimension: R512×512. The 
U-Net for 2D segmentation consisted of four encoding layers, one 
bottleneck layer, and four decoding layers as shown in Fig. 2A. 

Given a 3D CT scan, we applied three 2D U-Net models and gener-
ated three segmentation results pxy, pyz, pxz along the x-y, y-z, and x-z 
views. The final segmentation result in 3D space was calculated by 
summing up three intermediate predictions followed by taking a 
threshold of 2 as pfinal = (pxy + pyz + pxz) ≥ 2. 

2.4. Personalized federated learning 

To accomplish personalized FL, the personalized FedAvg (Per- 
FedAvg) [34] algorithm was adopted to acquire the optimal initial 
model (meta-model) as the server model, which could be easily adapted 
to the local heterogeneous data by performing just a few steps of 
gradient descent. Per-FedAvg was inspired by the fundamental idea of 
the Model-Agnostic Meta-Learning (MAML) framework [91]. Given a set 
of tasks from different underlying distributions, instead of finding the 
model that generalizes on all tasks as FL, MAML tends to find a 
meta-model that could perform better in different tasks after a few steps 
of local gradient descent. 

In FL, the goal of optimization is: 

min
w∈Rd

f (w)=
1
n
∑n

i=1
fi(w)

where fi(w) is the loss function to user ui. 
With the concept of MAML, the goal of the optimization becomes 

finding a good initialization: 

min
w∈Rd

F(w)=
1
n
∑n

i=1
fi(w − α∇fi(w))

where α (α ≥ 0) is the step size. 
As shown in Algorithm1, at each epoch k, the server will broadcast 

the server model to all users. Then, all users will train their local model 
with τ local epochs. After τ local epochs, a list of {wi

k+1,t}
τ
t=0 

will be 
generated with respect to the user ui, where wi

k+1,0 = wk, wi
k+1,t =

wi
k+1,t− 1 − β∇̃Fi(wi

k+1,t− 1), β is the local learning rate and ∇̃Fi(wi
k+1,t− 1) is 

an estimate of ∇Fi(wi
k+1,t− 1). 

Algorithm 1. PPPML-HMI  

2.5. Cyclic secure aggregation with homomorphic encryption 

Secure aggregation (SA) was introduced for FL by Bonawitz et al. 
[69], in which they used blinding with random values namely Shamir’s 
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Secret Sharing (SSS) [92] and symmetric encryption to protect the local 
models. The fundamental idea of SA is simple: suppose we have two 
users holding two private numbers a and b, and the server needs to 
calculate the value of a + b without knowing the actual value of a and b. 
Then we could generate a random number r and calculate a′ = a+ r and 
b′ = b − r. Hence the server could get the sum of a and b without 
knowing the actual value of a and b respectively. Based on this idea, 

Bonawitz et al. [69] let any two users ui and uj in the FL share a random 
number rij to mask the actual model weight with w′

i = mask(wi, rij) and 
w′

j = mask(wj, rij), thus the server can only get the w′
i and w′

j from users 
without knowing the real values of wi and wj. Still, the server can get the 
accurate summation when performing the aggregation as w′

i + w′
j = wi +

wj. However, their protocol requires four communications between each 

Fig. 2. A) Illustration of two tasks. We applied PPPML-HMI to the classification of healthy people and patients with 3D DenseNet on the RAD-ChestCT Dataset, and 
the segmentation of the lung infections of COVID-19 with a 2.5D U-Net method [8,15]. Illustration of the communication network and attackers of FL (B) and 
PPPML-HMI (C). Two types of attackers exist in our setting: 1) Attackers who can intercept messages sent from any users to the server or between users (type I), and 
2) Honest-but-curious attackers who are part of the users of PPPML-HMI (type II). 
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user and the server, which will cause overhead for users with limited 
resources. 

Based on the aforementioned possibilities for improvement, we 
designed the cyclic secure aggregation with homomorphic encryption 
(CSAHE) algorithm to transfer the secure aggregation from the server to 
a loop composed of all users in a decentralized manner with a two-step 
process as ‘encryption-summation’ for all non-initiator users. To protect 
the gradients transmitted in CSAHE, we encrypted all gradients with 
homomorphic encryption (MHE) based on the Cheon-Kim-Kim-Song 
(CKKS) cryptographic scheme [93] that provides approximate arith-
metic over vectors of complex numbers and performed the aggregation 
homomorphically with TenSEAL [94], which is a python library for 
performing homomorphic encryption operations on tensors, built on top 
of Microsoft SEAL. 

We integrated the CSAHE into PPPML-HMI to protect the gradients 
of users. As shown in Algorithm1, in each epoch, all users form a loop 
and an initiator is selected randomly from all users, while the remaining 
users are called non-initiator users. The initiator generates a random 
mask using a Gaussian distribution with a self-defined large σ. After that, 
the random mask will be summed to the initiator’s gradient to protect its 
actual value. Then, the noised gradient will be homomorphically 
encrypted and transmitted to the next user in the loop, who can also 
safely aggregate its gradient to this transmitted gradient homomorphi-
cally, and transmit the newly aggregated gradient to the next user. The 

aforementioned process keeps working till the aggregated gradient is 
transmitted back to the initiator. Then, the initiator eliminates the 
random mask from the aggregated gradient and decrypts it to recover 
the actual value. Finally, the initiator sends the aggregated gradient to 
the server for updating the server model. 

With CSAHE, each user except the initiator only needs to interact with 
two users located before and after in the loop and does not need to have 
other interactions with the server except for downloading the updated 
model in each global epoch. The secure aggregation in PPPML-HMI is 
conducted in a decentralized manner, which is different from the con-
ventional SA that happens at the server. HE in CSAHE allows all non- 
initiator users to aggregate their gradients homomorphically without the 
need to decrypt. As shown in Algorithm1, once the wi

k+1,τ of each user ui is 
calculated, user ui will calculate the weighted difference between the 
wi

k+1,τ and the server model wk as △wi
k+1,τ =

(
wi

k+1,τ − wk
)
∗ di

D. Then, all 
△wi

k+1,τ with i = 0,…,N − 1 will be securely aggregated through the 
CSAHE algorithm. Finally, the server will collect the securely aggregated 
gradient ΔwCSA

k+1,τ from the initiator for updating the server model with 
wk+1 = wk + ΔwCSA

k+1,τ. 
The public key encryption scheme is used in CSAHE, where a public 

key and a secret key are generated (Fig. 2C). The public key is shared by 
all users to allow the encryption of gradients before the homomorphic 
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aggregation and the private key is held only by the initiator to allow the 
decryption of the aggregated gradient before sending it to the server. 
Since the initiator is randomly selected in each epoch, the public key and 
secret key will be re-generated before the homomorphic aggregation 
during each epoch. While it is true that under normal circumstances, a 
non-initiator does not have access to the private key, it’s essential to 
address the potential vulnerabilities of CSAHE in practical scenarios 
where the private key could be compromised. In such unfortunate sit-
uations, a non-initiator may gain unauthorized access to the private key, 
thereby enabling them to decrypt the homomorphically encrypted 
gradient in the event of an attack. This vulnerability underscores the 
importance of safeguarding cryptographic keys, especially the private 
key held by the initiator, to reduce the risk of privacy breaches. Still, we 
could agree that the mechanism of regenerating key pairs at each epoch 
in CSAHE could effectively protect the process of gradient aggregation 
and reduce the risk of private key leakage. 

2.6. iDLG reconstruction attack 

Previous research has shown that the gradients transmitted from the 
user to the server in FL may still compromise data privacy [53–55]. 
Among those studies, the improved deep leakage from gradient (iDLG) is 
a state-of-the-art approach to obtain private training data from the 
gradients transmitted between users and the server as shown in 
Algorithm2. 

Algorithm 2. iDLG  

2.7. Performance evaluation 

To evaluate the performance on the classification task, we used the 
accuracy as defined below because the number of two classes is 
balanced: 

Accuracy=
TP + TN

TP + TN + FP + FN  

where TP, TN, FP, and FN stand for true positive, true negative, false 
positive and false negative. 

To evaluate the performance of lung infection segmentation with 
different methods, we used the Dice score as defined below: 

Dice=
2|Y ∩ Y′|

|Y| + |Y′|

where Y is the actual infection region annotated by radiologists, Y′ is the 
predicted infection region, and |Y| represents the cardinality of Y. 

2.8. Hyper-parameter selection and training settings 

To ensure a fair comparison, we tested the number of global epochs 
from {10, 20, 50, 100} and the number of local epochs from {1, 5, 10, 
20}. From our pre-experiments, we noticed that the number of global 
epochs K = 20 and the number of local epochs τ = 10 enabled the model 

to converge and provided a good trade-off between the computation 
time and model performance. The batch size and learning rate were set 
to be 64 and 10− 4 respectively. For CSAHE, the random noise was 
generated from a Gaussian distribution with mean = 0 and a randomly 
chosen large standard deviation (>100) to avoid the potential inversion 
attack. To implement HE with TenSEAL, we used the CKKS scheme with 
the polynomial modulus degree to be 8192 and the coefficient modulus 
sizes to be [26,26,26,26,26,26,31,31], meaning that the coefficient 
modulus will contain 8 primes of 31 bits, 26 bits, 26 bits, 26 bits, 26 bits, 
26 bits, 26 bits, and 31 bits. During the training, 32 workers were used 
for data loading and processing on one machine with 120 GB RAM and 
one NVIDIA V100 GPU. Nested cross-validation was adopted for data 
splitting and model training. All experimental results presented are the 
average values of 5 experiments with random initialization. 

3. Results 

We applied PPPML-HMI to a simulated heterogeneous dataset from 
the RAD-ChestCT dataset, where users’ data were grouped according to 
the slice thickness from 2 mm, 5 mm, 10 mm, to train a classification 
model and show the generalizability of PPPML-HMI when varying the 
number of users and the sample sizes. We also applied PPPML-HMI to a 
real-world case, where heterogeneous data were generated by five 
hospitals with different CT scanners, to train a segmentation model for 
COVID-19 lung infections. To demonstrate the effectiveness of PPPML- 
HMI, we compared three methods, including training independently 
using only each user’s own data, training in a centralized training 
manner using complete data, and training with one of the most classical 
and famous algorithms in FL namely FedAvg [20]. With both tasks 
together with different neural networks, the number of users, and 
sample sizes, we further gave evidence of the robustness and general-
izability of PPPML-HMI to these parameters. Meanwhile, we applied the 
improved deep leakage from gradients to simulate adversarial attacks on 
the segmentation task and showed the strong privacy-preserving capa-
bility of PPPML-HMI. 

3.1. PPPML-HMI is generalizable with various numbers of users and 
samples with varying data distribution in the classification task 

To show the generalizability of PPPML-HMI when varying the 
number of users, the sample sizes, and the data distribution, we simu-
lated three sets of data partitions on the RAD-ChestCT dataset [88,89] 
according to the slice thickness of CT scans and labeled them as Split 1, 
Split 2, and Split 3 as shown in Table 1. Split 1 had only one user with 
392 CT scans, which represented the centralized training scenario. Split 
2 had two users with an equal number of CT scans (196 and 196) but 
with different slice thicknesses (2 mm and 5 mm). Split 3 had three users 
with a varied number of CT scans (174, 68, and 150) and slice thick-
nesses (2 mm, 5 mm, and 10 mm) simultaneously. Different slice 
thicknesses as a common heterogeneity of data affect the performance of 
model training in practice. For each split, the goal was to train models 
for classifying healthy people and patients based on CT scans. Compared 
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to centralized training, FL led to a drastic reduction in the averaged 
accuracy at Split 2 (△acc = − 0.27) and Split 3 (△acc = − 0.15), where 
PPPML-HMI showed less reduction and better performance compared to 
FL at Split 2 (△acc = − 0.01) and Split 3 (△acc = − 0.03). The ablation 
study (PPPML-HMI w/o CSAHE, which is the same as PerFedAvg) 
showed that the improved classification accuracy of PPPML-HMI was 
contributed by using PerFedAvg while CSAHE achieved privacy pro-
tection without compromising model effectiveness. These results pro-
vided evidence of the generalizability of PPPML-HMI when varying the 
number of users, the sample sizes, and the data distribution. 

3.2. PPPML-HMI achieved personalization for federated heterogeneous 
segmentation of lung infections by COVID-19 

Since the classification task was relatively easy, we further applied 
PPPML-HMI to a real-world case, namely the segmentation of lung in-
fections by COVID-19. There were five hospitals in the real-world case, 
labeled as A ~ E, each of which used CT scanners of different models 
(Brilliance 16, iCT 256, Ingenuity CT, BrightSpeed, Optima CT520, 
Optima CT540, Discovery CT750 HD, SOMATOM Definition Edge, and 
SOMATOM Scope) from three manufacturers (Philips, GE medical sys-
tems, and SIEMENS). Hospitals also used different settings, such as slice 
thickness (1.00 nm, 1.25 nm, 2.00 nm, 3.30 nm, 5.00 nm, and 7.50 nm), 
and provided various numbers of data ranging from 9 to 119 as shown in 
Table 2. Different CT scanners and settings used by five hospitals led to 
inherent differences in the generated CT scans. As shown in Fig. 3A, we 
performed the dimension reduction and clustering on the original CT 
scan data provided by the hospital with the Principal Component 
Analysis (PCA) and assigned different colors to visualize the inherent 
differences between data according to the manufacturer, the hospital, 
and the slice thickness. Based on the results, CT scans generated by the 
CT scanners manufactured by GE medical system from hospital D 
showed significant differences from that of other manufacturers, 
including Philips and SIEMENS, and indicated that inherent differences 
existed in CT scans generated by different hospitals with diverse CT 
scanners. 

To show the effectiveness of PPPML-HMI on federated heteroge-
neous medical image analysis, we compared different approaches, 
including the centralized training using complete data from all hospitals, 
the independent training using data from each hospital respectively, and 
the most classical and famous FL algorithm namely FedAvg as shown in 
Fig. 3. Without taking the data privacy issues into consideration, the 
centralized training worked best when we collected complete data from 
all users A ~ E to train the server model and performed the prediction on 
each user’s data (ADice = 0.64, BDice = 0.62, CDice = 0.51,DDice = 0.51,
EDice = 0.69) as shown in Fig. 3B. However, when the privacy issue 
matters, the server could not collect data from users, thus centralized 
training could not be performed. Moreover, since data exists in a 
distributed manner, the heterogeneous data might cause problems in the 
FL scenario. To train models with heterogeneous data in FL, as one so-
lution, using each user’s own data to train independent models resulted 
in a significant performance reduction (△Dice = − 0.08, − 0.01, − 0.07, −
0.05, − 0.03 for users A ~ E respectively). Meanwhile, transferring a 
model trained on one user’s data to another user showed even worse 
performance and indicated poor generalization ability of models trained 
with such a method, e.g. applying the model trained on user C to user D 
only yielded a Dice score of 0.28. These results provided further evi-
dence of the strong heterogeneity in data across users in the real-world 
case. 

Since training a model with each user’s own data did not meet the 
need for clinical-grade performance, training a model using the infor-
mation in all users’ data but without sharing the raw data was necessary. 
With that, FL was the most intuitive solution. However, because of the 
strong heterogeneity of users’ data, the server model trained by FL 
(ADice = 0.51,DDice = 0.39,EDice = 0.63) performed even worse on users 
A, D, and E than the independently trained model using only the users’ 
own data (ADice = 0.56,DDice = 0.46,EDice = 0.66) as shown in Fig. 3C. 
Meanwhile, user C had only 9 samples and the data heterogeneity was 
not as significant as those between other users’ data (Fig. 3A), thus the 
server model trained with FL could achieve similar performance as the 
centralized training with complete data only at user C (Fig. 3B and C). 

In contrast to FL, similar to MAML, the server model generated by 

Table 1 
Description of the RAD-ChestCT dataset and averaged predicted accuracy of methods.  

Split ID User ID Slice thickness (mm) #Patients #Healthy People Accuracy 

Centralized training Federated learning PPPML-HMI (w/o CSAHE) PPPML-HMI 

Split 1 A 2 392 392 0.97 / / / 

Split 2 A 2 196 196 0.95 0.68 0.94 0.94 
B 5 196 196  

A 2 174 174     
Split 3 B 5 68 68 0.92 0.77 0.89 0.89  

C 10 150 150      

Table 2 
Description of the COVID-19 dataset. There are 5 hospitals (Ã E) and each of them owns data generated by different CT scanners and settings.  

User ID System label Manufacturer Model Slice thickness (mm) #Patients Total  

P_B16_2.0 Philips Brilliance 16 2.00 5  
A P_B16_3.3 Philips Brilliance 16 3.30 1 12  

P_B16_7.5 Philips Brilliance 16 7.50 6  

B P_I256_1.0 Philips iCT 256 1.00 114 119 
P_I256_5.0 Philips iCT 256 5.00 5 

C P_I_1.0 Philips Ingenuity CT 1.00 9 9  

G_B_1.25 GE medical systems BrightSpeed 1.25 1   
G_B_5.0 GE medical systems BrightSpeed 5.00 4  

D G_CT520_1.25 GE medical systems Optima CT520 1.25 11 24  
G_CT540_1.25 GE medical systems Optima CT540 1.25 7   
G_CT750_5.0 GE medical systems Discovery CT750 HD 5.00 1  

E S_SDE_1.0 SIEMENS SOMATOM Definition Edge 1.00 10 16 
S_SS_2.0 SIEMENS SOMATOM Scope 2.00 6  
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PPPML-HMI was a good initialization, which could learn the common 
features in heterogeneous data and could be easily adapted to local 
user’s data by a few local training steps. As shown in Fig. 3C, with the 
server model generated by PPPML-HMI as an initialization, only γ (γ <
5) steps of local training on the user’s data could adapt the server model 
to local user’s data (ADice = 0.62,BDice = 0.61,CDice = 0.51,DDice = 0.51,
EDice = 0.68) and achieve a similar performance as the centralized 
training with complete data and better performance than FL under the 
same total number of epochs. Additionally, the improvement of PPPML- 
HMI compared to FL was most significant for users A and D, as the data 
of both users showed the most significant data heterogeneity from the 
data of other users as shown in Fig. 3A. 

To further understand the differences in performance between 
methods, we visualized the predicted segmentation of the lung in-
fections on a high-quality sample (A000069) and a low-quality sample 
(A000075), respectively. The low-quality sample had significantly 
worse clarity and resolution of CT images than the high-quality sample 
as shown in Fig. 4A. Orange, green, and yellow were used to represent 
true positives, false positives, and false negatives respectively compared 
to the ground truth. For A000069, the independently trained model on 
the associated user’s data gave enormous false positives, while the 
model trained with FL predicted a large number of false negatives. In 
contrast, the personalized model from PPPML-HMI provided competi-
tive performance as the centrally trained model with complete data. For 

A000075, the personalized model from PPPML-HMI predicted more true 
positives compared to the centrally trained model with the complete 
data and rescued more false negatives compared to the model trained 
with FL. In summary, PPPML-HMI allowed model personalization to 
each user with heterogeneous data and achieved competitive perfor-
mance as the centralized training with complete data. 

3.3. PPPML-HMI protects privacy of CT scans 

There are two types of attackers in our setting: 1) attackers who can 
intercept messages sent from any users to the server and between any 
users (type I), and 2) honest-but-curious (HBC) attackers that are part of 
the users of PPPML-HMI (type II) as in Definition 1. 

Definition 1. The HBC attacker is a legitimate participant in a 
communication protocol who will not deviate from the defined protocol 
but will attempt to learn all possible information from legitimately 
received messages [95]. 

Sensitive information could be deciphered from medical images, 
such as tissue patterns and lesions, which could compromise patients’ 
privacy [96]. CT scans of COVID-19 patients require even stronger pri-
vacy protection. To show that PPPML-HMI protected privacy from the 
CT scans of COVID-19 patients and resisted both types of attackers, we 
applied the iDLG (Method) to simulate an attacker reconstructing the 

Fig. 3. A) Dimension reduction and clustering with PCA according to the manufacturer, originating hospital, and slice thickness indicated that CT scans generated by 
different CT scanners had significant inherent differences. B) Heatmap showed the Dice score of segmentation when applying models trained centrally on the data of 
each hospital. C) Barplot showed the Dice score of models trained centrally, with federated learning, and with PPPML-HMI. 
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training images by stealing the gradients transmitted between users and 
the server. During each attack, we initialized dummy data and used the 
gradient transmitted between the user and server to update the dummy 
data. We performed the iDLG attack for FL, where type I attackers exist 
and PPPML-HMI, where both types of attackers exist, respectively. Then, 
we visualized the dummy data every 1000 iterations, as shown in 
Fig. 4B. To quantitatively assess the reconstructive capabilities of iDLG 
and illustrate the privacy-preserving capability of PPPML-HMI, we 
conducted experiments involving a random selection of 50 samples, 
which were subjected to reconstruction using iDLG within the Federated 
Learning (FL) and PPPML-HMI scenarios. Upon calculating the Mean 
Square Error (MSE) between the Dummy data and the real data as shown 
in Fig. 4C, our results indicated that iDLG could efficiently reconstruct 
the data in the FL scenario, exhibiting a low MSE. In contrast, 
PPPML-HMI demonstrates a substantially higher MSE, implying that 
PPPML-HMI blocked the reconstruction. 

In practice, since the server is usually controlled by a third party, the 
users could not completely trust the server. As shown in Fig. 2B, in FL, 
type I attackers could intercept the gradients sent between users and the 
server to learn the sensitive information of the corresponding users. 
With the CSAHE, only the initiator could communicate with the server 
and send the securely aggregated gradient. Though type I attackers 
could intercept the gradient between the initiator and the server, they 

only get the averaged gradient over all users. When type I attackers 
incept the information transmitted between users in CSAHE, they only 
get the ciphertext instead of the plaintext as all gradients transmitted in 
the loop are encrypted with HE. Hence, type I attackers could be resisted 
by PPPML-HMI. 

Type II attackers may exist in PPPML-HMI as gradients are trans-
mitted between users as shown in Fig. 2B. For example, an HBC user in 
the loop may try to recover sensitive information using the gradient 
transmitted from the previous user due to curiosity. As the public key for 
HE is shared by all users in the loop and the private key is held only by 
the initiator, in the case of a private key leak, the HBC user could decrypt 
the gradient from the previous user and see the plaintext. However, the 
plaintext deciphered by any non-initiator users is always further pro-
tected by the Gaussian noise added by the initiator, thus type II attackers 
could be resisted as shown in Fig. 4B. 

To demonstrate the results of gradient inversion, we applied iDLG to 
the associated segmentation model. As shown in Fig. 4B, in terms of 
visual results, the iDLG attack on FL could effectively reconstruct the CT 
images in the training data, while the iDLG attack on PPPML-HMI was 
effectively blocked. Overall, PPPML-HMI protected privacy by blocking 
the reconstruction of sensitive medical images. 

Fig. 4. A) Visualization of predicted segmentation mask on the high-quality sample A000069 and low-quality sample A000075 (Orange: true positives, Green: false 
positives, Yellow: false negatives). B) Visualization of the dummy data from the iDLG attack on FL and PPPML-HMI against both types of attackers. C) Distribution of 
MSE of the dummy data from the iDLG attack on FL and PPPML-HMI. 
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4. Discussion 

In this paper, we present a novel, robust and open-source method for 
personalized and privacy-preserving federated heterogeneous medical 
imaging analysis. PPPML-HMI is a training paradigm similar to FL, 
which has no task-specific requirements and does not require any 
modifications to the existing DL models. With the nature of open-source, 
users of PPPML-HMI only need to apply PPPML-HMI as a plug-in to their 
neural network models as how they work with FL to achieve personal-
ized and privacy-preserving federated learning with even faster 
convergence speed (Fig. S1). Based on the results of the simulated 
classification task on the RAD-ChestCT dataset and the real-word seg-
mentation task based on the COVID-19 dataset, we believe that PPPML- 
HMI could be applied to any potential medical imaging problem with 
different DL methods, especially for those with heterogeneous data and 
the need for federation and privacy protection, as the segmentation 
method we adopted in the real-world case was also a general method for 
segmentation of lung, tracheal, vascular and so on. 

Though we applied PPPML-HMI in both simulated and real-world 
COVID-19 cases, all experiments were conducted in a laboratory envi-
ronment, meaning all practical conditions were in the ideal state, 
including the computing power of the users’ machines and the 
communication consumption between machines. As shown in Table 3, 
PPPML-HMI showed slightly higher requirements for the training time 
and similar memory and GPU compared to FL, meaning that PPPML- 
HMI could still work in the case that FL works. Meanwhile, inte-
grating personalization and HE-based privacy protection in PPPML-HMI 
brought an additional 35.5 % computation time and higher memory 
storage requirements due to encryption and decryption compared to FL 
as shown in Table S1, thus finding new solutions to accelerate could be 
one of the main research directions in the future. 

Due to the special design of PPPML-HMI, it can only be applied when 
the number of clients ≥3, meaning that PPPML-HMI is vulnerable when 
the number of clients equals 2. Suppose that the initiator is the type II 
attacker and there are two clients u1 and u2, then the initiator could 
decode the exact gradient of the other client and thus do the gradient 
inversion attack as shown in the classic FL setting by eliminating. 
Because u1 holds ΔwCSA

k,τ = Δw1
k,τ + R and transfers HE(ΔwCSA

k,τ ) to u2. 
Then, u2 aggregates Δw2

k,2 to HE(ΔwCSA
k,τ ) homomorphically. The aggre-

gated gradients HE(ΔwCSA
k,τ ) + HE(Δw2

k,τ) = HE(Δw1
k,τ +R)+ HE(Δw2

k,τ)

goes back to the initiator u1. In this case, eliminating happens when u1 

eliminates HE(Δw1
k,τ +R) from the aggregated gradients and is able to 

know the value of Δw2
k,τ. Though PPPML-HMI is not exactly private for 

the case where there are only two clients, it could work as designed 
when the number of clients ≥3. Because the act of elimination becomes 
increasingly challenging when the number of clients surpasses three, 
and this difficulty further escalates as the client count rises. In practical 
scenarios, it’s common to have a significantly greater number of hos-
pitals as clients. Moreover, even in cases where only two clients are 
involved, the initiator is randomly chosen in each round. This random 
selection process ensures that there is no consistent gradient for one 
client to persistently eliminate another client, thereby reducing the 
susceptibility of the model to inversion attacks. 

Nevertheless, regardless of the issue in computing resources and 
vulnerability, we need to take more practical problems into consider-
ation, such as the imbalance of computing power among hospitals, the 
deviation of data quality of different hospitals, the latency in network 
communication between hospitals and the server, and so on. Those 
practical problems have not been addressed in this work as we were 
focusing on a learning paradigm. Still, we will solve those realistic ob-
stacles and further improve PPPML-HMI in future work. 
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